[1] Umair M., Cheema M.A., Cheema O., Li H., andLu H., 2021. Impact of COVID-19 on IoT adoption in healthcare, smart homes, smart buildings, smart cities, transportation and industrial IoT. Sensors, 21(11), 3838. [2] Razmjoo A., Gandomi A., Mahlooji M., Astiaso Garcia D., Mirjalili S., Rezvani A., Ahmadzadeh S., andMemon S., 2022. An investigation of the policies and crucial sectors of smart cities based on IoT application. Applied Sciences, 12(5), 2672. [3] Sarker I.H., Khan A.I., Abushark Y.B., andAlsolami F., 2023. Internet of things (IoT) security intelligence: a comprehensive overview, machine learning solutions and research directions. Mobile Networks and Applications, 28(1), pp. 296-312. [4] Vakili A., Al‐Khafaji H.M.R., Darbandi M., Heidari A., Jafari Navimipour N., andUnal M., 2024. A new service composition method in the cloud‐based internet of things environment using a grey wolf optimization algorithm and MapReduce framework. Concurrency and Computation: Practice and Experience, 36(16), e8091. [5] Huarng K.H., Yu T.H.K., andfang Lee C., 2022. Adoption model of healthcare wearable devices. Technological Forecasting and Social Change, 174, 121286. [6] Bianchi C., Tuzovic S., andKuppelwieser V.G., 2023. Investigating the drivers of wearable technology adoption for healthcare in south america. Information Technology & People, 36(2), pp. 916-939. [7] Heidari A., Navimipour N.J., Dag H., Talebi S., andUnal M., 2024. A novel blockchain-based deepfake detection method using federated and deep learning models. Cognitive Computation, 16(3), pp. 1073-1091. [8] Heidari A., Navimipour N.J., andOtsuki A., 2024. Cloud-based non-destructive characterization. Non-Destructive Material Characterization Methods, pp. 727-765. [9] Bhatt C., Kumar I., Vijayakumar V., Singh K.U., andKumar A., 2021. The state of the art of deep learning models in medical science and their challenges. Multimedia Systems, 27(4), pp. 599-613. [10] Heidari A., Shishehlou H., Darbandi M., Navimipour N.J., andYalcin S., 2024. A reliable method for data aggregation on the industrial internet of things using a hybrid optimization algorithm and density correlation degree. Cluster Computing, 27(6), pp. 7521-7539. [11] Javeed D., Gao T., Khan M.T., andAhmad I., 2021. A hybrid deep learning-driven SDN enabled mechanism for secure communication in internet of things (IoT). Sensors, 21(14), 4884. [12] Malik J., Akhunzada A., Bibi I., Imran M., Musaddiq A., andKim S.W., 2020. Hybrid deep learning: an efficient reconnaissance and surveillance detection mechanism in SDN. IEEE Access, 8, pp. 134695-134706. [13] Alkhamisi A., Katib I., andBuhari S.M., 2023. Blockchain-assisted hybrid deep learning-based secure mechanism for software defined networks. In 2023 IEEE International Conference on Consumer Electronics (ICCE), pp. 1-8. [14] Heidari A., Navimipour N.J., andUnal M., 2023. A secure intrusion detection platform using blockchain and radial basis function neural networks for internet of drones. IEEE Internet of Things Journal, 10(10), pp. 8445-8454. [15] Jmal R., Ghabri W., Guesmi R., Alshammari B.M., Alshammari A.S., andAlsaif H., 2023. Distributed blockchain-SDN secure IoT system based on ANN to mitigate DDoS attacks. Applied Sciences, 13(8), 4953. [16] Islam M.J., Rahman A., Kabir S., Karim M.R., Acharjee U.K., Nasir M.K., Band S.S., Sookhak M., andWu S., 2021. Blockchain-SDN-based energy-aware and distributed secure architecture for IoT in smart cities. IEEE Internet of Things Journal, 9(5), pp. 3850-3864. [17] Khan M.A., Abbas S., Rehman A., Saeed Y., Zeb A., Uddin M.I., Nasser N., andAli A., 2020. A machine learning approach for blockchain-based smart home networks security. IEEE Network, 35(3), pp. 223-229. [18] Rathore S., andPark J.H., 2020. A blockchain-based deep learning approach for cyber security in next generation industrial cyber-physical systems. IEEE Transactions on Industrial Informatics, 17(8), pp. 5522-5532. [19] Kumar P., Kumar R., Kumar A., Franklin A.A., Garg S., andSingh S., 2022. Blockchain and deep learning for secure communication in digital twin empowered industrial IoT network. IEEE Transactions on Network Science and Engineering, 10(5), pp. 2802-2813. [20] Singh S.K., Jeong Y.S., andPark J.H., 2020. A deep learning-based IoT-oriented infrastructure for secure smart city. Sustainable Cities and Society, 60, 102252. [21] Cui Y., Qian Q., Guo C., Shen G., Tian Y., Xing H., andYan L., 2021. Towards DDoS detection mechanisms in software-defined networking. Journal of Network and Computer Applications, 190, 103156. [22] Alotaibi J.,2025. A hybrid software-defined networking approach for enhancing IoT cybersecurity with deep learning and blockchain in smart cities. Peer-to-Peer Networking and Applications, 18(3), 123. [23] Zhang A., Yu H., Zhou S., Huan Z., andYang X., 2022. Instance weighted SMOTE by indirectly exploring the data distribution. Knowledge-Based Systems, 249, 108919. [24] Hussien A.G., Chhabra A., Hashim F.A., andPop A., 2024. A novel hybrid artificial gorilla troops optimizer with honey badger algorithm for solving cloud scheduling problem. Cluster Computing, 27(9), pp. 13093-13128. |