[1] Reusens M., Stevens A., Tonglet J., De Smedt J., Verbeke W., Vanden Broucke S., andBaesens B., 2024. Evaluating text classification: A benchmark study.Expert Systems with Applications, 254, 124302. [2] Fouad D.H., El-Sayed R.R., andGomaa W.H., 2024. Optimizing text classification: A comparative analysis of pre-trained models and custom neural network architectures on the AuTextification dataset. In2024 Intelligent Methods, Systems, and Applications (IMSA), pp. 305-311. [3] Banerjee P., andKashyap S., 2024. Unlocking transfer learning's potential in natural language processing: an extensive investigation and evaluation. In2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), pp. 1-7. [4] Fields J., Chovanec K., andMadiraju P., 2024. A survey of text classification with transformers: how wide? how large? how long? how accurate? how expensive? how safe?.IEEE Access, 12, pp. 6518-6531. [5] Karl F., andScherp A., 2023. Transformers are short-text classifiers. InInternational Cross-Domain Conference for Machine Learning and Knowledge Extraction, pp. 103-122. [6] Yenduri G., Srivastava G., Maddikunta P.K.R., Jhaveri R.H., Wang W., Vasilakos A.V., andGadekallu T.R., 2023. Generative pre-trained transformer: A comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions.Arxiv Preprint Arxiv:2305.10435. [7] Eang C., andLee S., 2024. Improving the accuracy and effectiveness of text classification based on the integration of the Bert model and a recurrent neural network (RNN_BerT_Based).Applied Sciences, 14(18), 8388. [8] Chang W.C., Yu H.F., Zhong K., Yang Y., andDhillon I.S., 2020. Taming pretrained transformers for extreme multi-label text classification. InProceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3163-3171. [9] Reddy V., Uppukonda U.R., andVeeranjaneyulu N., 2024. Enhancing multi-label text classification using adaptive promptify concepts. In2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), pp. 1-5. [10] Abhishek, K., 2022. News article classification using a transfer learning approach. In 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), pp. 1-6. [11] Jaradat S., Nayak R., Paz A., andElhenawy M., 2024. Ensemble learning with pre-trained transformers for crash severity classification: A deep NLP approach.Algorithms, 17(7), 284. [12] Taneja K., andVashishtha J., 2022. Comparison of transfer learning and traditional machine learning approach for text classification. In2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 195-200. [13] Siino M., Tinnirello I., andLa Cascia M., 2024. Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on transformers and traditional classifiers.Information Systems, 121, 102342. [14] Kora R., andMohammed A., 2023. A comprehensive review on transformers models for text classification. In2023 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), pp. 1-7. [15] Agbesi V.K., Chen W., Yussif S.B., Hossin M.A., Ukwuoma C.C., Kuadey N.A., Agbesi C.C., Abdel Samee N., Jamjoom M.M., andAl-antari M.A., 2023. Pre-trained transformer-based models for text classification using low-resourced ewe language.Systems, 12(1), 1. [16] Rodrawangpai B., andDaungjaiboon W., 2022. Improving text classification with transformers and layer normalization.Machine Learning with Applications, 10, 100403. [17] Gao S., Alawad M., Young M.T., Gounley J., Schaefferkoetter N., Yoon H.J., Wu X.C., Durbin E.B., Doherty J., Stroup A., andCoyle L., 2021. Limitations of transformers on clinical text classification. IEEE Journal of Biomedical and Health Informatics,25(9), pp. 3596-3607. [18] Erciyes N.E., andGörür A.K., 2021. Deep learning methods with pre-trained word embeddings and pre-trained transformers for extreme multi-label text classification. In2021 6th International Conference on Computer Science and Engineering (UBMK), pp. 50-55. [19] Zhang J., Chang W.C., Yu H.F., andDhillon I., 2021. Fast multi-resolution transformer fine-tuning for extreme multi-label text classification.Advances in Neural Information Processing Systems, 34, pp. 7267-7280. |