[1] Wang Y., Wang J., Wang H., Zhang R., and Li M., 2021. Users’ mobility enhances information diffusion in online social networks.Information Sciences, 546, pp. 329-348. [2] Li C.T., Lin Y.J., and Yeh M.Y., 2018. Forecasting participants of information diffusion on social networks with its applications.Information Sciences, 422, pp. 432-446. [3] Bhattacharya M., Roy S., Chattopadhyay S., Das A.K., and Shetty S., 2023. A comprehensive survey on online social networks security and privacy issues: Threats, machine learning‐based solutions, and open challenges.Security and Privacy, 6(1), e275. [4] Wang X., Sirianni A.D., Tang S., Zheng Z., and Fu F., 2020. Public discourse and social network echo chambers driven by socio-cognitive biases.Physical Review X, 10(4), 041042. [5] Shahzad S., and Omar B., 2021. Social network matters: The influence of online social capital on youth political participation in Pakistan. Journal of Information Technology & Politics,18(4), pp. 430-442. [6] Suh S.,2020. Fashion everydayness as a cultural revolution in social media platforms—focus on fashion Instagrammers.Sustainability, 12(5), 1979. [7] Pop R.A., Săplăcan Z., Dabija D.C., and Alt M.A., 2022. The impact of social media influencers on travel decisions: the role of trust in consumer decision journey. Current Issues in Tourism,25(5), pp. 823-843. [8] Siregar Y., Kent A., Peirson-Smith A., and Guan C., 2023. Disrupting the fashion retail journey: social media and GenZ's fashion consumption. International Journal of Retail & Distribution Management,51(7), pp. 862-875. [9] Alsaad A., Alam M.M., and Lutfi A., 2023. A sensemaking perspective on the association between social media engagement and pro-environment behavioural intention.Technology in Society, 72, 102201. [10] Gashroo O.B., and Mehrotra M., 2023. Hitacod: hierarchical framework for textual abusive content detection.SN Computer Science, 4(6), 727. [11] Gashroo O.B., and Mehrotra M., 2022. Analysis and classification of abusive textual content detection in online social media. InIntelligent Communication Technologies and Virtual Mobile Networks: Proceedings of ICICV 2022, pp. 173-190. [12] Sanh V.,2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.arXiv preprint arXiv:1910.01108. [13] Devlin J.,2018. Bert: Pre-training of deep bidirectional transformers for language understanding.arXiv preprint arXiv:1810.04805. [14] Ali M., Hassan M., Kifayat K., Kim J.Y., Hakak S., and Khan M.K., 2023. Social media content classification and community detection using deep learning and graph analytics.Technological Forecasting and Social Change, 188, 122252. [15] Chen H., McKeever S., and Delany S.J., 2018. A comparison of classical versus deep learning techniques for abusive content detection on social media sites. InSocial Informatics: 10th International Conference, SocInfo 2018, St. Petersburg, Russia, September 25-28, 2018, Proceedings, Part I 10, pp. 117-133. [16] Awal M.A., Rahman M.S., and Rabbi J., 2018. Detecting abusive comments in discussion threads using naïve bayes. In2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), pp. 163-167. [17] Wulczyn E., Thain N., and Dixon L., 2017. Ex machina: personal attacks seen at scale. InProceedings of the 26th international conference on world wide web, pp. 1391-1399. [18] Kaur S., Singh S., and Kaushal S., 2021. Abusive content detection in online user-generated data: a survey.Procedia Computer Science, 189, pp. 274-281. [19] Zampieri M., Malmasi S., Nakov P., Rosenthal S., Farra N., and Kumar R., 2019. Predicting the type and target of offensive posts in social media.arXiv preprint arXiv:1902.09666. [20] Alrashidi B., Jamal A., Khan I., and Alkhathlan A., 2022. A review on abusive content automatic detection: approaches, challenges and opportunities.PeerJ Computer Science, 8, e1142. [21] Lan Z.,2019. Albert: a lite bert for self-supervised learning of language representations.arXiv preprint arXiv:1909.11942. [22] Radford A., Wu J., Child R., Luan D., Amodei D., and Sutskever I., 2019. Language models are unsupervised multitask learners.OpenAI blog, 1(8), 9. [23] Srivastava A., Hasan M., Yagnik B., Walambe R., andKotecha K., 2021. Role of artificial intelligence in detection of hateful speech for Hinglish data on social media. InApplications of artificial intelligence and machine learning: Select proceedings of ICAAAIML 2020, pp. 83-95. [24] García S., Ramírez-Gallego S., Luengo J., Benítez J.M., and Herrera F., 2016. Big data preprocessing: methods and prospects.Big Data Analytics, 1, pp. 1-22. [25] Zheng X., Wang M., and Ordieres-Meré J., 2018. Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0.Sensors, 18(7), 2146. [26] İncir R., and Bozkurt F., 2024. A study on effective data preprocessing and augmentation method in diabetic retinopathy classification using pre-trained deep learning approaches. Multimedia Tools and Applications,83(4), pp. 12185-12208. [27] Tran N., Chen H., Bhuyan J., and Ding J., 2022. Data curation and quality evaluation for machine learning-based cyber intrusion detection.IEEE Access, 10, pp. 121900-121923. [28] Koumarelas I., Jiang L., and Naumann F., 2020. Data preparation for duplicate detection. Journal of Data and Information Quality (JDIQ),12(3), pp. 1-24. [29] Krouska A., Troussas C., and Virvou M., 2016. The effect of preprocessing techniques on twitter sentiment analysis. In2016 7th international conference on information, intelligence, systems & applications (IISA), pp. 1-5. [30] Davis J., and Goadrich M., 2006. The relationship between precision-recall and ROC curves. InProceedings of the 23rd international conference on Machine learning, pp. 233-240. [31] Japkowicz N.,2013. Assessment metrics for imbalanced learning.Imbalanced learning: Foundations, Algorithms, and Applications, pp. 187-206. [32] Gaudreault J.G., Branco P., and Gama J., 2021. An analysis of performance metrics for imbalanced classification. InInternational Conference on Discovery Science, pp. 67-77. [33] Gorwa R., Binns R., and Katzenbach C., 2020. Algorithmic content moderation: technical and political challenges in the automation of platform governance.Big Data & Society, 7(1), 2053951719897945. [34] Sander B.,2019. Freedom of expression in the age of online platforms: the promise and pitfalls of a human rights-based approach to content moderation.Fordham Int'l LJ, 43, 939. |