[1] Abanmi N., Kurdi H. and Alzamel M., 2022. Dynamic IoT malware detection in Android systems using profile hidden Markov models.Applied Sciences, 13(1), p.557. [2] Buriro A., Buriro A.B., Ahmad T., Buriro S. and Ullah S., 2023. MalwD&C: a quick and accurate machine learning-based approach for malware detection and categorization.Applied Sciences, 13(4), p.2508. [3] Alatram A., Sikos L.F., Johnstone M., Szewczyk P. and Kang J.J., 2023. DoS/DDoS-MQTT-IoT: A dataset for evaluating intrusions in IoT networks using the MQTT protocol. Computer Networks, 231, p.109809. [4] Souri, A. and Hosseini, R., 2018. A state-of-the-art survey of malware detection approaches using data mining techniques. Human-centric Computing and Information Sciences,8(1), pp.1-22. [5] Lakshminarayana S., Praseed A. and Thilagam P.S., 2024. Securing the IoT Application Layer from an MQTT Protocol Perspective: Challenges and Research Prospects.IEEE Communications Surveys & Tutorials. [6] Paris I.L.B.M., Habaebi M.H. and Zyoud A.M., 2023. Implementation of SSL/TLS security with MQTT protocol in IoT environment. Wireless Personal Communications,132(1), pp.163-182. [7] Muñoz Castañeda Á.L., Mata J.A.A. and Aláiz-Moretón H., 2023. Characterization of threats in IoT from an MQTT protocol-oriented dataset. Complex & Intelligent Systems,9(5), pp.5281-5296. [8] Çelik S., Yalçın N. and Çakır S., 2023. MitM Attacks and IoT Security: A Case Study on MQTT. Journal of Artificial Intelligence and Data Science,3(2), pp.99-106. [9] Hintaw A.J., Manickam S., Karuppayah S., Aladaileh M.A., Aboalmaaly M.F. and Laghari S.U.A., 2023. A robust security scheme based on enhanced symmetric algorithm for MQTT in the Internet of Things.IEEE Access, 11, pp.43019-43040. [10] Chien, H.Y. and Ciou, P.P., 2023. Design and Implementation of Efficient IoT Authentication Schemes for MQTT 5.0. Journal of Internet Technology,24(3), pp.665-674. [11] Al Hanif, A. and Ilyas, M., 2024. Effective Feature Engineering Framework for Securing MQTT Protocol in IoT Environments.Sensors, 24(6), p.1782. [12] Al-Ani A., Shen W.K., Al-Ani A.K., Laghari S.A. and Elejla O.E., 2023, September. Evaluating Security of MQTT Protocol in Internet of Things. In 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)(pp. 502-509). IEEE. [13] Sushma P.,2024. Smart Devices Security with Armstrong Number Encryption Standard Algorithm using MQTT Protocol-An Iot Application. International Journal of Intelligent Systems and Applications in Engineering,12(10), p. 45-51. [14] Alzahrani, A. and Aldhyani, T.H., 2022. Artificial intelligence algorithms for detecting and classifying MQTT protocol Internet of Things attacks.Electronics, 11(22), p.3837. [15] Devi, R.A. and Arunachalam, A.R., 2023. Enhancement of IoT device security using an Improved Elliptic Curve Cryptography algorithm and malware detection utilizing deep LSTM.High-Confidence Computing, 3(2), p.100117. [16] Otoom, A.F. and Abdallah, E.E., 2023. Deep learning for accurate detection of brute force attacks on IOT Networks.Procedia Computer Science, 220, pp.291-298. [17] Zeeshan M., Riaz Q., Bilal M.A., Shahzad M.K., Jabeen H., Haider S.A. and Rahim A., 2021. Protocol-based deep intrusion detection for dos and ddos attacks using unsw-nb15 and bot-iot data-sets.IEEE Access, 10, pp.2269-2283. [18] Ibitoye O., Shafiq O. and Matrawy A., 2019, December. Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks. In 2019 IEEE global communications conference (GLOBECOM)(pp. 1-6). IEEE. [19] Ahmad M., Riaz Q., Zeeshan M., Tahir H., Haider S.A. and Khan M.S., 2021. Intrusion detection in internet of things using supervised machine learning based on application and transport layer features using UNSW-NB15 data-set.EURASIP Journal on Wireless Communications and Networking, 2021, pp.1-23. [20] Michelena Á., Aveleira‐Mata J., Jove E., Bayón‐Gutiérrez M., Novais P., Romero O.F., Calvo‐Rolle J.L. and Aláiz‐Moretón H., 2024. A novel intelligent approach for man‐in‐the‐middle attacks detection over internet of things environments based on message queuing telemetry transport.Expert Systems, 41(2), p.e13263. [21] Almiani M., AbuGhazleh A., Al-Rahayfeh A., Atiewi S. and Razaque A., 2020. Deep recurrent neural network for IoT intrusion detection system. Simulation Modelling Practice and Theory, 101, p.102031. [22] Zeghida H., Boulaiche M. and Chikh R., 2023. Securing MQTT protocol for IoT environment using IDS based on ensemble learning. International Journal of Information Security,22(4), pp.1075-1086. [23] Alaiz-Moreton H., Aveleira-Mata J., Ondicol-Garcia J., Muñoz-Castañeda A.L., García I. and Benavides C., 2019. Multiclass Classification Procedure for Detecting Attacks on MQTT‐IoT Protocol.Complexity, 2019(1), p.6516253. [24] Mosaiyebzadeh F., Rodriguez L.G.A., Batista D.M. and Hirata R., 2021, November. A network intrusion detection system using deep learning against mqtt attacks in iot. In 2021 IEEE Latin-American Conference on Communications (LATINCOM)(pp. 1-6). IEEE. [25] Abbas A., Khan M.A., Latif S., Ajaz M., Shah A.A. and Ahmad J., 2022. A new ensemble-based intrusion detection system for internet of things.Arabian Journal for Science and Engineering, pp.1-15. [26] Kaushik, A. and Al-Raweshidy, H., 2024. A novel intrusion detection system for internet of things devices and data. Wireless Networks,30(1), pp.285-294. |