[1] Nicholls J., Kuppa A. and Le-Khac N.A., 2021. Financial cybercrime: A comprehensive survey of deep learning approaches to tackle the evolving financial crime landscape.Ieee Access, 9, pp.163965-163986. [2] Hossain S., Abtahee A., Kashem I., Hoque M.M. and Sarker I.H., 2020. Crime prediction using spatio-temporal data. In Computing Science, Communication and Security: First International Conference, COMS2 2020, Gujarat, India, March 26-27, 2020, Revised Selected Papers 1(pp. 277-289). Springer Singapore. [3] Khatun M.R., Ayon S.I., Hossain M.R. and Alam M.J., 2021. Data mining technique to analyse and predict crime using crime categories and arrest records.Indonesian Journal of Electrical Engineering and Computer Science, 22(2), p.1052. [4] Tayal D.K., Jain A., Arora S., Agarwal S., Gupta T. and Tyagi N., 2015. Crime detection and criminal identification in India using data mining techniques.AI & society, 30, pp.117-127. [5] Pande V., Samant V. and Nair S., 2016. Crime detection using data mining.International Journal of Engineering Research & Technology (IJERT), 5(01), p.2. [6] Tamir A., Watson E., Willett B., Hasan Q. and Yuan J.S., 2021. Crime prediction and forecasting using machine learning algorithms. International Journal of Computer Science and Information Technologies,12(2), pp.26-33. [7] Butt U.M., Letchmunan S., Hassan F.H., Ali M., Baqir A., Koh T.W. and Sherazi H.H.R., 2021. Spatio-temporal crime predictions by leveraging artificial intelligence for citizens security in smart cities.IEEE Access, 9, pp.47516-47529. [8] Al-Khater W.A., Al-Maadeed S., Ahmed A.A., Sadiq A.S. and Khan M.K., 2020. Comprehensive review of cybercrime detection techniques.IEEE access, 8, pp.137293-137311. [9] Chackravarthy S., Schmitt S. and Yang L., 2018, October. Intelligent crime anomaly detection in smart cities using deep learning. In 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC)(pp. 399-404). IEEE. [10] Qayyum S.,2018. A survey of data mining techniques for crime detection. University of Sindh Journal of Information and Communication Technology,2(1), pp.1-6. [11] Navalgund, U.V. and Priyadharshini, K., 2018, December. Crime intention detection system using deep learning. In 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)(pp. 1-6). IEEE. [12] Nasaruddin N., Muchtar K., Afdhal A. and Dwiyantoro A.P.J., 2020. Deep anomaly detection through visual attention in surveillance videos.Journal of Big Data, 7(1), p.87. [13] Safat W., Asghar S. and Gillani S.A., 2021. Empirical analysis for crime prediction and forecasting using machine learning and deep learning techniques.IEEE access, 9, pp.70080-70094. [14] Rajapakshe C., Balasooriya S., Dayarathna H., Ranaweera N., Walgampaya N. and Pemadasa N., 2019, December. Using cnns rnns and machine learning algorithms for real-time crime prediction. In 2019 International Conference on Advancements in Computing (ICAC)(pp. 310-316). IEEE. [15] Zhang X., Liu L., Xiao L. and Ji J., 2020. Comparison of machine learning algorithms for predicting crime hotspots.IEEE access, 8, pp.181302-181310. [16] Alagarsamy S., Govindaraj V., Irfan M., Swami R. and Kumar N.M., 2020. Smart recognition of real time face using convolution neural network (CNN) Technique.vol, 83, pp.23406-23411. [17] Sernani P., Falcionelli N., Tomassini S., Contardo P. and Dragoni A.F., 2021. Deep learning for automatic violence detection: Tests on the AIRTLab dataset.IEEE Access, 9, pp.160580-160595. [18] Kumar J.R., Dhabliya D. and Dari S.S., 2023. A comparative study of machine learning algorithms for image recognition in privacy protection and crime detection. Int J Intell Syst Appl Eng,11(9s), pp.482-490. [19] Shah N., Bhagat N. and Shah M., 2021. Crime forecasting: a machine learning and computer vision approach to crime prediction and prevention.Visual Computing for Industry, Biomedicine, and Art, 4(1), p.9. [20] Cheng M., Cai K. and Li M., 2021, January. RWF-2000: an open large scale video database for violence detection. In 2020 25th International Conference on Pattern Recognition (ICPR)(pp. 4183-4190). IEEE. |