[1] AlMajali A., Elmosalamy A., Safwat O., and Abouelela H., 2024. Adaptive ransomware detection using similarity-preserving hashing.Applied Sciences, 14(20), 9548. [2] AlMajali A., Qaffaf A., Alkayid N., and Wadhawan Y., 2022. Crypto-ransomware detection using selective hashing. In2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA), pp. 328-331. [3] Alzahrani S., Xiao Y., and Sun W., 2022. An analysis of conti ransomware leaked source codes.IEEE Access, 10, pp. 100178-100193. [4] Albin Ahmed A., Shaahid A., Alnasser F., Alfaddagh S., Binagag S., and Alqahtani D., 2023. Android ransomware detection using supervised machine learning techniques based on traffic analysis.Sensors, 24(1), 189. [5] Alzahrani S., Xiao Y., Asiri S., Alasmari N., and Li T., 2025. RansomFormer: A cross-modal transformer architecture for ransomware detection via the fusion of byte and API features. Electronics (2079-9292),14(7). [6] Cen M., Jiang F., and Doss R., 2025. RansoGuard: A RNN-based framework leveraging pre-attack sensitive APIs for early ransomware detection.Computers & Security, 150, 104293. [7] El Hariri A., Mouiti M., and Lazaar M., 2025. Realtime ransomware process detection using an advanced hybrid approach with machine learning within IoT ecosystems.Engineering Research Express, 7(1), 015211. [8] Albshaier L., Almarri S., and Rahman M.H., 2024. Earlier decision on detection of ransomware identification: A comprehensive systematic literature review.Information, 15(8), 484. [9] Samtani S., Chen H., Kantarcioglu M., and Thuraisingham B., 2022. Explainable artificial intelligence for cyber threat intelligence (XAI-CTI). IEEE Transactions on Dependable and Secure Computing,19(4), pp. 2149-2150. [10] Sharma D.K., Mishra J., Singh A., Govil R., Srivastava G., and Lin J.C.W., 2022. Explainable artificial intelligence for cybersecurity.Computers and Electrical Engineering, 103, 108356. [11] Alzahrani S., Xiao Y., and Asiri S., 2023. Conti ransomware development evaluation. InProceedings of the 2023 ACM Southeast Conference, pp. 39-46. [12] Gómez-Hernández J.A., and García-Teodoro P., 2024. Lightweight crypto-ransomware detection in android based on reactive honeyfile monitoring.Sensors, 24(9), 2679. [13] Lee Y., Lee J., Ryu D., Park H., and Shin D., 2024. Clop ransomware in action: A comprehensive analysis of its multi-stage tactics.Electronics, 13(18), 3689. [14] Li J., Yang G., and Shao Y., 2024. Ransomware detection model based on adaptive graph neural network learning.Applied Sciences, 14(11), 4579. [15] Yamany B., Elsayed M.S., Jurcut A.D., Abdelbaki N., and Azer M.A., 2024. A holistic approach to ransomware classification: leveraging static and dynamic analysis with visualization.Information, 15(1), 46. [16] Gazzan M., and Sheldon F.T., 2023. An enhanced minimax loss function technique in generative adversarial network for ransomware behavior prediction.Future Internet, 15(10), 318. [17] Gazzan M., and Sheldon F.T., 2024. An incremental mutual information-selection technique for early ransomware detection.Information, 15(4), 194. [18] Drabent K., Janowski R., and Mongay Batalla J., 2024. How to circumvent and beat the ransomware in android operating system—A case study of locker. CB! tr.Electronics, 13(11), 2212. [19] Alqaralleh B.A., Aldhaban F., AlQarallehs E.A., and Al-Omari A.H., 2022. Optimal machine learning enabled intrusion detection in cyber-physical system environment. Comput. Mater. Contin,72(3), pp. 4691-4707. [20] Sakellariou G., Katsantonis M., and Fouliras P., 2025. Probabilistic measurement of CTI quality for large numbers of unstructured CTI products.Electronics, 14(9), 1826. [21] Umer M., Sadiq S., Karamti H., Alhebshi R.M., Alnowaiser K., Eshmawi A.A., Song H., and Ashraf I., 2022. Deep learning-based intrusion detection methods in cyber-physical systems: challenges and future trends.Electronics, 11(20), 3326. [22] Rahima Manzil H.H., and Naik S.M., 2024. Android ransomware detection using a novel hamming distance based feature selection. Journal of Computer Virology and Hacking Techniques,20(1), pp. 71-93. [23] Li B., Wu Y., Song J., Lu R., Li T., and Zhao L., 2020. DeepFed: federated deep learning for intrusion detection in industrial cyber-physical systems. IEEE Transactions on Industrial Informatics,17(8), pp. 5615-5624. [24] Lee J., Yun J., and Lee K., 2024. A study on countermeasures against neutralizing technology: encoding algorithm-based ransomware detection methods using machine learning.Electronics, 13(6), 1030. [25] Kharraz A., Robertson W., Balzarotti D., Bilge L., and Kirda E., 2015. Cutting the gordian knot: A look under the hood of ransomware attacks. InInternational Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 3-24. [26] Malatji M., and Tolah A., 2025. Artificial intelligence (AI) cybersecurity dimensions: a comprehensive framework for understanding adversarial and offensive AI. AI and Ethics,5(2), pp. 883-910. [27] Mohamed N.,2025. Artificial intelligence and machine learning in cybersecurity: a deep dive into state-of-the-art techniques and future paradigms.Knowledge and Information Systems, pp. 1-87. [28] Ramadevi P., Baluprithviraj K.N., Pillai V.A., and Subramaniam K., 2022. Deep learning based distributed intrusion detection in secure cyber physical systems. Intelligent Automation & Soft Computing,34(3). [29] Thakur S., Chakraborty A., De R., Kumar N., and Sarkar R., 2021. Intrusion detection in cyber-physical systems using a generic and domain specific deep autoencoder model.Computers & Electrical Engineering, 91, 107044. [30] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser Ł., and Polosukhin I., 2017. Attention is all you need.Advances in Neural Information Processing Systems, 30. |