[1] Teixeira H.N., Lopes I., andBraga A.C., 2020. Condition-based maintenance implementation: a literature review.Procedia Manufacturing, 51, pp. 228-235. [2] Van Horenbeek A., andPintelon L., 2013. A dynamic predictive maintenance policy for complex multi-component systems.Reliability Engineering & System Safety, 120, pp. 39-50. [3] Zonta T., Da Costa C.A., da Rosa Righi R., de Lima M.J., Da Trindade E.S., andLi G.P., 2020. Predictive maintenance in the industry 4.0: A systematic literature review.Computers & Industrial Engineering, 150, 106889. [4] Abood A.M., Nasser A.R., andAl-Khazraji H., 2022. Predictive maintenance of electromechanical systems using deep learning algorithms. IngéNierie Des SystèMes D'Information,27(6). [5] Karatuğ Ç., Arslanoğlu Y., andSoares C.G., 2023. Design of a decision support system to achieve condition-based maintenance in ship machinery systems.Ocean Engineering, 281, 114611. [6] Hrnjica B., andSoftic S., 2020. Explainable AI in manufacturing: a predictive maintenance case study. InIFIP International Conference on Advances in Production Management Systems, pp. 66-73. [7] Cardoso D., andFerreira L., 2020. Application of predictive maintenance concepts using artificial intelligence tools.Applied Sciences, 11(1), 18. [8] Cai Y., Teunter R.H., andde Jonge B., 2023. A data-driven approach for condition-based maintenance optimization. European Journal of Operational Research,311(2), pp. 730-738. [9] Hadi R.H., Hady H.N., Hasan A.M., Al-Jodah A., andHumaidi A.J., 2023. Improved fault classification for predictive maintenance in industrial IoT based on AutoML: A case study of ball-bearing faults.Processes, 11(5), 1507. [10] Qureshi M.S., Umar S., andNawaz M.U., 2024. Machine learning for predictive maintenance in solar farms. International Journal of Advanced Engineering Technologies and Innovations,1(3), pp. 27-49. [11] Maione F., Lino P., Maione G., andGiannino G., 2024. A machine learning framework for condition-based maintenance of marine diesel engines: a case study.Algorithms, 17(9), 411. [12] Nasser A., andAl-Khazraji H., 2022. A hybrid of convolutional neural network and long short-term memory network approach to predictive maintenance. International Journal of Electrical and Computer Engineering (IJECE),12(1), pp. 721-730. [13] Jakubowski J., Stanisz P., Bobek S., andNalepa G.J., 2021. Anomaly detection in asset degradation process using variational autoencoder and explanations.Sensors, 22(1), 291. [14] Autran J.V., Kuhn V., Diguet J.P., Dubois M., andBuche C., 2024. AI4I-PMDI: predictive maintenance datasets with complex industrial settings’ irregularities.Procedia Computer Science, 246, pp. 1201-1209. [15] Qi Z., Feng Y., Wang S., andLi C., 2025. Enhancing hydropower generation Predictions: A comprehensive study of XGBoost and Support Vector Regression models with advanced optimization techniques.Ain Shams Engineering Journal, 16(1), pp. 103206. [16] Batchu R.K., andSeetha H., 2022. An integrated approach explaining the detection of distributed denial of service attacks.Computer Networks, 216, 109269. [17] Rai R., Tiwari M.K., Ivanov D., andDolgui A., 2021. Machine learning in manufacturing and industry 4.0 applications. International Journal of Production Research,59(16), pp. 4773-4778. [18] Benítez-Andrades J.A., Prada-García C., Ordás-Reyes N., Blanco M.E., Merayo A., andSerrano-García A., 2025. Enhanced prediction of spine surgery outcomes using advanced machine learning techniques and oversampling methods.Health Information Science and Systems, 13(1), 24. [19] Bhavsar H., andGanatra A., 2012. A comparative study of training algorithms for supervised machine learning. International Journal of Soft Computing and Engineering (IJSCE),2(4), pp. 2231-2307. [20] Montesinos López O.A., Montesinos López A., andCrossa J., 2022. Support vector machines and support vector regression. InMultivariate Statistical Machine Learning Methods for Genomic Prediction, pp. 337-378. [21] Ambrish G., Ganesh B., Ganesh A., Srinivas C., andMensinkal K., 2022. Logistic regression technique for prediction of cardiovascular disease. Global Transitions Proceedings,3(1), pp. 127-130. [22] Bhavitha B.K., Rodrigues A.P., andChiplunkar N.N., 2017. Comparative study of machine learning techniques in sentimental analysis. In2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 216-221. [23] Naiem S., Khedr A.E., Idrees A.M., andMarie M.I., 2023. Enhancing the efficiency of gaussian naïve bayes machine learning classifier in the detection of DDOS in cloud computing.IEEE Access, 11, pp. 124597-124608. [24] Matzka S.,2020. Explainable artificial intelligence for predictive maintenance applications. In2020 Third International Conference on Artificial Intelligence for Industries (Ai4i), pp. 69-74. [25] Gül A., andAdalı E., 2017. A feature selection algorithm for IDS. In2017 International Conference on Computer Science and Engineering (UBMK), pp. 816-820. [26] Ehsani F., andHosseini M., 2025. Customer churn analysis using feature optimization methods and tree-based classifiers. Journal of Services Marketing,39(1), pp. 20-35. |