[1] Chevtchenko S.F., Rocha E.D.S., Dos Santos M.C.M., Mota R.L., Vieira D.M., De Andrade E.C., andDe Araújo D.R.B., 2023. Anomaly detection in industrial machinery using IoT devices and machine learning: a systematic mapping.IEEE Access, 11, pp. 128288-128305. [2] Mehta A., Kaur N., andKaur A., 2025. An ensemble voting classification approach for software defects prediction. International Journal of Information Technology,17(3), pp. 1813-1820. [3] Kermenov R., Nabissi G., Longhi S., andBonci A., 2023. Anomaly detection and concept drift adaptation for dynamic systems: a general method with practical implementation using an industrial collaborative robot.Sensors, 23(6), 3260. [4] Perales Gómez Á.L., Fernández Maimó L., Huertas Celdrán A., andGarcía Clemente F.J., 2020. Madics: A methodology for anomaly detection in industrial control systems.Symmetry, 12(10), 1583. [5] Fathi K., van de Venn H.W., andHonegger M., 2021. Predictive maintenance: an autoencoder anomaly-based approach for a 3 DoF delta robot.Sensors, 21(21), 6979. [6] Leite D., Andrade E., Rativa D., andMaciel A.M., 2024. Fault detection and diagnosis in industry 4.0: a review on challenges and opportunities.Sensors (Basel, Switzerland), 25(1), 60. [7] Falcão D., Reis F., Farinha J., Lavado N., andMendes M., 2024. Fault detection in industrial equipment through analysis of time series stationarity.Algorithms, 17(10), 455. [8] Theissler A., Pérez-Velázquez J., Kettelgerdes M., andElger G., 2021. Predictive maintenance enabled by machine learning: use cases and challenges in the automotive industry.Reliability Engineering & System Safety, 215, 107864. [9] Peng Z.K., andChu F.L., 2004. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mechanical Systems and Signal Processing,18(2), pp. 199-221. [10] Elkateb S., Métwalli A., Shendy A., andAbu-Elanien A.E., 2024. Machine learning and IoT-based predictive maintenance approach for industrial applications.Alexandria Engineering Journal, 88, pp. 298-309. [11] Yan R., Shang Z., Xu H., Wen J., Zhao Z., Chen X., andGao R.X., 2023. Wavelet transform for rotary machine fault diagnosis: 10 years revisited.Mechanical Systems and Signal Processing, 200, 110545. [12] Dalzochio J., Kunst R., Pignaton E., Binotto A., Sanyal S., Favilla J., andBarbosa J., 2020. Machine learning and reasoning for predictive maintenance in industry 4.0: current status and challenges.Computers in Industry, 123, 103298. [13] Chen J., Li Z., Pan J., Chen G., Zi Y., Yuan J., Chen B., andHe Z., 2016. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review.Mechanical Systems and Signal Processing, 70, pp. 1-35. [14] Zhu T., Ran Y., Zhou X., andWen Y., 2019. A survey of predictive maintenance: systems, purposes and approaches.Arxiv Preprint Arxiv:1912.07383. [15] Li T., Sun C., Yan R., andChen X., 2024. A novel unsupervised graph wavelet autoencoder for mechanical system fault detection.Journal of Intelligent Manufacturing, pp. 1-18. [16] Orlowska-Kowalska T., andWolkiewicz M., 2022. Fault diagnosis and prognosis of mechatronic systems using artificial intelligence and estimation theory.Electronics, 11(21), 3528. [17] Li T., Zhou Z., Li S., Sun C., Yan R., andChen X., 2022. The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study.Mechanical Systems and Signal Processing, 168, 108653. [18] Fernandes M., Corchado J.M., andMarreiros G., 2022. Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review. Applied Intelligence,52(12), pp. 14246-14280. [19] Liu R., Zhang Q., Lin D., Zhang W., andDing S.X., 2024. Causal intervention graph neural network for fault diagnosis of complex industrial processes.Reliability Engineering & System Safety, 251, 110328. [20] Ayankoso S., andOlejnik P., 2023. Time-series machine learning techniques for modeling and identification of mechatronic systems with friction: A review and real application.Electronics, 12(17), 3669. [21] Lei Y., Yang B., Jiang X., Jia F., Li N., andNandi A.K., 2020. Applications of machine learning to machine fault diagnosis: A review and roadmap.Mechanical Systems and Signal Processing, 138, 106587. [22] Neupane D., Bouadjenek M.R., Dazeley R., andAryal S., 2025. Data-driven machinery fault diagnosis: A comprehensive review.Neurocomputing, 129588. [23] Nuhu A.A., Zeeshan Q., Safaei B., andShahzad M.A., 2023. Machine learning-based techniques for fault diagnosis in the semiconductor manufacturing process: a comparative study. the Journal of Supercomputing,79(2), pp. 2031-2081. [24] Baimukashev D., Rakhim B., Rubagotti M., andVarol H.A., 2021. End-to-end deep fault-tolerant control. IEEE/ASME Transactions on Mechatronics,27(4), pp. 2224-2234. [25] Lee X.Y., Kumar A., Vidyaratne L., Rao A.R., Farahat A., andGupta C., 2023. An ensemble of convolution-based methods for fault detection using vibration signals. In2023 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 172-179. |