[1] Divya D., Marath B., and Santosh Kumar M.B., 2023. Review of fault detection techniques for predictive maintenance. Journal of Quality in Maintenance Engineering,29(2), pp. 420-441. [2] Ghazal M., Basmaji T., Yaghi M., Alkhedher M., Mahmoud M., and El-Baz A.S., 2020. Cloud-based monitoring of thermal anomalies in industrial environments using AI and the Internet of robotic things.Sensors, 20(21), 6348. [3] Karuppusamy P.,2020. Machine learning approach to predictive maintenance in manufacturing industry-a comparative study. Journal of Soft Computing Paradigm (JSCP),2(4), pp. 246-255. [4] Çınar Z.M., Abdussalam Nuhu A., Zeeshan Q., Korhan O., Asmael M., and Safaei B., 2020. Machine learning in predictive maintenance towards sustainable smart manufacturing in Industry 4.0.Sustainability, 12(19), 8211. [5] Namuduri S., Narayanan B.N., Davuluru V.S.P., Burton L., and Bhansali S., 2020. Deep learning methods for sensor-based predictive maintenance and future perspectives for electrochemical sensors.Journal of the Electrochemical Society, 167(3), 037552. [6] Ettahri O., Oukaira A., Ali M., Hassan A., Nabavi M., Savaria Y., and Lakhssassi A., 2020. A real-time thermal monitoring system intended for embedded sensor interfaces.Sensors, 20(19), 5657. [7] Guo Z., Wang C., Yang G., Huang Z., and Li G., 2022. Msft-yolo: improved yolov5 based on transformer for detecting defects of the steel surface.Sensors, 22(9), 3467. [8] Amato E., Corradino C., Torrisi F., and Del Negro C., 2023. A deep convolutional neural network for detecting volcanic thermal anomalies from satellite images.Remote Sensing, 15(15), 3718. [9] Korolev S., Sorokin A., Urmanov I., Kamaev A., and Girina O., 2021. Classification of video observation data for volcanic activity monitoring using computer vision and modern neural networks (on Klyuchevskoy volcano example).Remote Sensing, 13(23), 4747. [10] Li Y., Zhang H., & Zhang Q. (2021). A framework for interactive online 3d visualization of electric information. InJournal of Physics: Conference Series, 1757(1), 012170. [11] Uppal M., Gupta D., Goyal N., Imoize A.L., Kumar A., Ojo S., Pani S.K., Kim Y., and Choi J., 2023. A real‐time data monitoring framework for predictive maintenance based on the Internet of Things.Complexity, 2023(1), 9991029. [12] Bagavathiappan S., Lahiri B.B., Saravanan T., Philip J., and Jayakumar T., 2013. Infrared thermography for condition monitoring-A review.Infrared Physics & Technology, 60, pp. 35-55. [13] Wilson A.N., Gupta K.A., Koduru B.H., Kumar A., Jha A., and Cenkeramaddi L.R., 2023. Recent advances in thermal imaging and its applications using machine learning: A review. IEEE Sensors Journal,23(4), pp. 3395-3407. [14] Cho H.W., Shin S.J., Seo G.J., Kim D.B., and Lee D.H., 2022. Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: molybdenum material.Journal of Materials Processing Technology, 302, 117495. [15] Zollanvari A., Kunanbayev K., Bitaghsir S.A., and Bagheri M., 2020. Transformer Fault Prognosis Using a Deep Recurrent Neural Network over Vibration Signals.IEEE Transactions on Instrumentation and Measurement, 70, pp. 1-11. [16] Mahmoud M.A., Md Nasir N.R., Gurunathan M., Raj P., and Mostafa S.A., 2021. The current state of the art in research on predictive maintenance in smart grid distribution network: Fault's types, causes, and prediction methods—a systematic review.Energies, 14(16), 5078. [17] Ait Abdelmoula I., Kaitouni S.I., Lamrini N., Jbene M., Ghennioui A., Mehdary A., and El Aroussi M., 2023. Towards a sustainable edge computing framework for condition monitoring in decentralized photovoltaic systems. Heliyon,9(11). [18] Zheng X., Chen F., Lou L., Cheng P., and Huang Y., 2022. Real-time detection of full-scale forest fire smoke based on deep convolution neural network.Remote Sensing, 14(3), 536. [19] Gamazo-Real J.C., Fernández R.T., and Armas A.M., 2023. Comparison of Edge Computing Methods in Internet of Things Architectures for Efficient Estimation of Indoor Environmental Parameters Using Machine Learning.Engineering Applications of Artificial Intelligence, 126, 107149. [20] Azhagiri M., and Rajesh A., 2016. A concept for minimizing false alarms and security compromise by coupling the dynamic learning of the system with fuzzy logic. Indian Journal of Science and Technology,9(37). |