[1] Ortiz-Bejar J., Tellez E.S., and Graff M., 2019. Improving classification performance by feature space transformations and model selection.Arxiv Preprint Arxiv:1907.06258. [2] De Amorim L.B., Cavalcanti G.D., and Cruz R.M., 2023. The choice of scaling technique matters for classification performance.Applied Soft Computing, 133, 109924. [3] Blum L., Elgendi M., and Menon C., 2022. Impact of box-cox transformation on machine-learning algorithms.Frontiers in Artificial Intelligence, 5, 877569. [4] Tieppo E., Barddal J.P., and Nievola J.C., 2022. Improving data stream classification using incremental yeo-johnson power transformation. In2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3286-3292. [5] De Vazelhes W., Carey C.J., Tang Y., Vauquier N., and Bellet A., 2020. Metric-learn: metric learning algorithms in Python. Journal of Machine Learning Research,21(138), pp. 1-6. [6] Suárez J.L., García S., and Herrera F., 2021. A tutorial on distance metric learning: mathematical foundations, algorithms, experimental analysis, prospects and challenges.Neurocomputing, 425, pp. 300-322. [7] Kamoi R., and Kobayashi K., 2020. Why is the mahalanobis distance effective for anomaly detection?.Arxiv Preprint Arxiv:2003.00402. [8] Shrivastava A., and Vamsi P.R., 2023. Anomaly detection using minimum covariant determinant as feature in multivariate data. InProceedings of the 2023 Fifteenth International Conference on Contemporary Computing, pp. 501-514. [9] Ghojogh B., and Crowley M., 2019. Linear and quadratic discriminant analysis: tutorial.Arxiv Preprint Arxiv:1906.02590. [10] Cacoullos T.ed., 2014. Discriminant Analysis and Applications. Academic Press. [11] Tharwat A.,2016. Linear vs. quadratic discriminant analysis classifier: a tutorial. International Journal of Applied Pattern Recognition,3(2), pp. 145-180. [12] Kelly M., Longjohn R. and Nottingham K., 2023. The UCI machine learning repository [online] [13] Koçhan N., Tutuncu G.Y., Smyth G.K., Gand olfo L.C., and Giner G., 2019. qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data.PeerJ, 7, e8260. [14] Ujiie H., Omachi S., and Aso H., 2002. A discriminant function considering normality improvement of the distribution. In2002 International Conference on Pattern Recognition, 2, pp. 224-227. [15] Li H., Jia M., and Mao Z., 2023. Dynamic feature extraction-based quadratic discriminant analysis for industrial process fault classification and diagnosis.Entropy, 25(12), 1664. [16] Valls J.M., Aler R., Galván I.M., and Camacho D., 2021. Supervised data transformation and dimensionality reduction with a 3-layer multi-layer perceptron for classification problems. Journal of Ambient Intelligence and Humanized Computing,12(12), pp. 10515-10527. [17] Sudibyo U., Rustad S., and ono P.N., and Fanani A.Z., 2023. Separability-based quadratic feature transformation to improve classification performance. International Journal of Advanced Computer Science & Applications,14(11). [18] Topolski M., and Beza M., 2022. Modification of the principal component analysis method based on feature rotation by class centroids. Journal of Universal Computer Science (JUCS),28(3). [19] Valls J.M., and Aler R., 2009. Optimizing linear and quadratic data transformations for classification tasks. In2009 Ninth International Conference on Intelligent Systems Design and Applications, pp. 1025-1030. [20] Gunasundari B., and Arun S., 2022. Ensemble classifier with hybrid feature transformation for high dimensional data in healthcare. In2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 886-892. [21] Xiao M., Wang D., Wu M., Liu K., Xiong H., Zhou Y., and Fu Y., 2024. Traceable group-wise self-optimizing feature transformation learning: A dual optimization perspective. ACM Transactions on Knowledge Discovery From Data,18(4), pp. 1-22. [22] ElMorshedy M.M., Fathalla R., and El-Sonbaty Y., 2022. Feature transformation framework for enhancing compactness and separability of data points in feature space for small datasets.Applied Sciences, 12(3), 1713. [23] Hasan S.N.S., and Jamil N.W., 2023. A comparative study of hybrid dimension reduction techniques to enhance the classification of high-dimensional microarray data. In2023 IEEE 11th Conference on Systems, Process & Control (ICSPC), pp. 240-245. [24] Xiong C., Zhang J., and Luo X., 2016. Ridge-forward quadratic discriminant analysis in high-dimensional situations. Journal of Systems Science and Complexity,29(6), pp. 1703-1715. [25] Sifaou H., Kammoun A., and Alouini M.S., 2020. High-dimensional linear discriminant analysis classifier for spiked covariance model. Journal of Machine Learning Research,21(112), pp. 1-24. [26] Zhou X., Chen W., and Li Y., 2024. netQDA: local network-guided high-dimensional quadratic discriminant analysis.Mathematics, 12(23), 3823. [27] Naidu G., Zuva T., and Siband a E.M., 2023. A review of evaluation metrics in machine learning algorithms. InComputer Science Online Conference, pp. 15-25. |