[1] Tjahjono B., Esplugues C., Ares E., andPelaez G., 2017. What does industry 4.0 mean to supply chain?.Procedia Manufacturing, 13, pp. 1175-1182. [2] Baptista L.F., andBarata J., 2021. Piloting industry 4.0 in SMEs with RAMI 4.0: an enterprise architecture approach.Procedia Computer Science, 192, pp. 2826-2835. [3] Salih A., Alsalhi L., andAbou-Moghli A., 2024. Entrepreneurial orientation and digital transformation as drivers of high organizational performance: Evidence from Iraqi private bank. Uncertain Supply Chain Management,12(1), pp. 9-18. [4] Abusalma A., Al-Oraini B., Al-Daoud K., andAlshurideh M.T., 2024. The impact of supply chain performance on financial performance: dimensions of the SCOR model.Uncertain Supply Chain Manag, 11(3), pp. 1409-1416, 2024. [5] Velda A.M.E.,2019. Impact of supply chain management practices on financial performance: case study of automotive suppliers in morocco. In2019 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), pp. 1-5. [6] Collins A., Petty M., Vernon-Bido D., andSherfey S., 2015. A call to arms: standards for agent-based modeling and simulation.Journal of Artificial Societies and Social Simulation, 18(3), 12. [7] Yang W., andTakakuwa S., 2017. Simulation-based dynamic shop floor scheduling for a flexible manufacturing system in the industry 4.0 environment. In2017 Winter Simulation Conference (WSC), pp. 3908-3916. [8] Xie J., andLiu C.C., 2017. Multi-agent systems and their applications. Journal of International Council on Electrical Engineering,7(1), pp. 188-197. [9] Shen W., Hao Q., Yoon H.J., andNorrie D.H., 2006. Applications of agent-based systems in intelligent manufacturing: an updated review. Advanced Engineering INFORMATICS,20(4), pp. 415-431. [10] Leitão P., Colombo A.W., andKarnouskos S., 2016. Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges.Computers in Industry, 81, pp. 11-25. [11] Hussain M.S., andAli M., 2019. A multi-agent based dynamic scheduling of flexible manufacturing systems.Global Journal of Flexible Systems Management, 20, pp. 267-290. [12] Sabar M., Montreuil B., andFrayret J.M., 2009. A multi-agent-based approach for personnel scheduling in assembly centers. Engineering Applications of Artificial Intelligence,22(7), pp. 1080-1088. [13] Bouaouda A., andSayouti Y., 2022. Hybrid meta-heuristic algorithms for optimal sizing of hybrid renewable energy system: a review of the state-of-the-art. Archives of Computational Methods in Engineering,29(6), pp. 4049-4083. [14] Jebari H., El Azzouzi S.R., andSamadi H., 2015. Hybridation des métaheuristiques pour la résolution de problème d'ordonnancement multi-objectif dans un atelier flow-shop. InXèMe ConféRence Internationale: Conception Et Production IntéGréEs. [15] Ojstersek R., Brezocnik M., andBuchmeister B., 2020. Multi-objective optimization of production scheduling with evolutionary computation: A review. International Journal of Industrial Engineering Computations,11(3), pp. 359-376. [16] Deb K., Pratap A., Agarwal S., andMeyarivan T.A.M.T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,6(2), pp. 182-197. [17] Deb K.,2011. Multi-objective optimisation using evolutionary algorithms: an introduction. InMulti-Objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3-34. [18] Zhou A., Qu B.Y., Li H., Zhao S.Z., Suganthan P.N., andZhang Q., 2011. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation,1(1), pp. 32-49. |