Int J Performability Eng ›› 2025, Vol. 21 ›› Issue (2): 104-111.doi: 10.23940/ijpe.25.02.p5.104111
• Original article • Previous Articles Next Articles
Meroua Sahraoui* and Ahmed Bellaouar
Submitted on
;
Revised on
;
Accepted on
Contact:
*E-mail address: Meroua Sahraoui and Ahmed Bellaouar. Improving Industrial Production Efficiency: A Hybrid Approach to Dynamic Scheduling - A Case Study [J]. Int J Performability Eng, 2025, 21(2): 104-111.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Luściński S., and Ivanov V., 2020. A simulation study of industry 4.0 factories based on the ontology on flexibility with using flexsim® software. [2] Herrera M., Pérez-Hernández M., Kumar Parlikad A., and Izquierdo J., 2020. Multi-agent systems and complex networks: review and applications in systems engineering. [3] Belil S., Tchernev N., and Tchomte S.K., 2019. Une approche intégrée d'optimisation et de modélisation/simulation à évènements discrets pour la planification d'une chaîne logistique hybride. In [4] El Bakkouri, A., 2021. De la logistique au supply chain logistique: une revue de la littérature. [5] Tounsi J.,2009. [6] Chaib-Draa B., Jarras I., and Moulin B., 2001. Systèmes multi-agents: principes généraux et applications. [7] Amblard F., El Fallah-Seghrouchni A., Gaudou B., and Hanachi C., 2021. Systèmes multi-agents. [8] Kato T., and Kamoshida R., 2020. Multi-agent simulation environment for logistics warehouse design based on self-contained agents. [9] El Azizi, M.B., 2014. [10] Labarthe O., Montreuil B., Ferrarini A., and Espinasse B., 2004. Modélisation multi-agents pour la simulation de chaînes logistiques de type personnalisation de masse. In5e ConféRence Francophone De MOdéLisation Et SIMulation, MOSIM'04, pp. 1-3. [11] Brennan R.W., and William O., 2000. A simulation test-bed to evaluate multi-agent control of manufacturing systems. In [12] Gjerdrum J., Shah N., and Papageorgiou L.G., 2001. A combined optimization and agent-based approach to supply chain modelling and performance assessment. [13] Toorajipour R., Sohrabpour V., Nazarpour A., Oghazi P., and Fischl M., 2021. Artificial intelligence in supply chain management: A systematic literature review. [14] El Ghilali, M., Cherkaoui, C.and Mammass, D., Apport des systèmes multi-agents pour la modélisation d'une chaîne logistique. [15] Bouaouda A., and Sayouti Y., 2022. Hybrid meta-heuristic algorithms for optimal sizing of hybrid renewable energy system: a review of the state-of-the-art. [16] Jebari H., El Azzouzi S.R., and Samadi H., 2015. Hybridation des métaheuristiques pour la résolution de problème d'ordonnancement multi-objectif dans un atelier flow-shop. In [17] Gao Z., and Qiao H., 2024. A study of flexible job-shop scheduling with dual constraints. [18] Ojstersek R., Brezocnik M., and Buchmeister B., 2020. Multi-objective optimization of production scheduling with evolutionary computation: A review. |
[1] | Updesh Kumar Jaiswal and Amarjeet Prajapati. An Effective PSO-Driven Method for Test Data Generation in Branch Coverage Software Testing [J]. Int J Performability Eng, 2025, 21(1): 1-9. |
[2] | Archana Sharma and Dharmveer Singh Rajpoot. A DNN Anti-Predatory Algorithm-Based Model to Enhance the Efficiency of Software Effort Estimation [J]. Int J Performability Eng, 2025, 21(1): 10-23. |
[3] | Seema Kalonia and Amrita Upadhyay. Comparative Analysis of Machine Learning Model and PSO Optimized CNN-RNN for Software Fault Prediction [J]. Int J Performability Eng, 2025, 21(1): 48-55. |
[4] | Manu Banga. Enhancing Software Fault Prediction using Machine Learning [J]. Int J Performability Eng, 2024, 20(9): 529-540. |
[5] | Kalyani H. Deshmukh, Gajendra R. Bamnote, and Pratik K Agrawal. A Novel Approach for Drought Monitoring and Evaluation using Time Series Analysis and Deep Learning [J]. Int J Performability Eng, 2024, 20(8): 498-509. |
[6] | Meenakshi Chawla and Meenakshi Pareek. A Hybrid Deep Learning Perspective for Software Effort Estimation [J]. Int J Performability Eng, 2024, 20(7): 442-450. |
[7] | Koteswarapavan Chivukula and Laxmi Narayan Pattanaik. Effects of Industry 4.0 Technologies on Lean Manufacturing and Organizational Performances: An Empirical Study using Structural Equation Modelling [J]. Int J Performability Eng, 2024, 20(6): 355-366. |
[8] | Meroua Sahraoui and Ahmed Bellaouar. A New Modeling Approach to Enhance Reliability, Availability, Maintainability, and Performance of Production System Equipment in a Supply Chain [J]. Int J Performability Eng, 2024, 20(4): 242-252. |
[9] | Vipan and Raj Kumar. Hybrid Fuzzy-Neuro and DNN-Based Framework for VM Allocation and Resource Optimization in Cloud Systems [J]. Int J Performability Eng, 2024, 20(12): 733-740. |
[10] | Meenakshi Chawla and Meenakshi Pareek. Hybridizing Intelligence: A Comparative Study of Machine Learning Algorithm and ANN-PSO Deep Learning Model for Software Effort Estimation [J]. Int J Performability Eng, 2024, 20(11): 668-675. |
[11] | Hak Gupta Sindhu, Tyagi Abhishek, and Sharma Richa. Predicting the Spectral and Energy Efficiency of LTE Network [J]. Int J Performability Eng, 2024, 20(10): 640-647. |
[12] | Mini Agarwal and Bharat Bhushan Agarwal. Methodical Implementation of Data Mining Classifiers and ANN for Prediction of Accomplishment of Student Education [J]. Int J Performability Eng, 2023, 19(9): 587-597. |
[13] | Me Me Khaing and N. Jeyanthi. EDocDeDup: Electronic Document Data Deduplication Towards Storage Optimization [J]. Int J Performability Eng, 2023, 19(7): 471-480. |
[14] | Linkai Chen, Honghui Fan, and Hongjin Zhu. Multi-Objective Optimization of Cancer Treatment Using the Multi-Objective Grey Wolf Optimizer (MOGWO) [J]. Int J Performability Eng, 2023, 19(7): 481-490. |
[15] | Yassine Eddouh, Abdelmajid Daya, Rabie Elotmani, and Abdelhamid Touache. Optimization Approaches for Cost Reduction in Preventive Maintenance Strategies: A Comparative Study [J]. Int J Performability Eng, 2023, 19(6): 359-367. |
|