Int J Performability Eng ›› 2023, Vol. 19 ›› Issue (9): 607-623.doi: 10.23940/ijpe.23.09.p6.607623
Previous Articles Next Articles
Aashita Rajput, Muskan Yadav, Sachin Yadav, Megha Chhabra*, and Arun Prakash Agarwal
Contact:
*E-mail address: Aashita Rajput, Muskan Yadav, Sachin Yadav, Megha Chhabra, and Arun Prakash Agarwal. Patch-Based Breast Cancer Histopathological Image Classification using Deep Learning [J]. Int J Performability Eng, 2023, 19(9): 607-623.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Roslidar R., Saddami K., Arnia F., Syukri M., andMunadi K.A Study of Fine-Tuning CNN Models based on Thermal Imaging for Breast Cancer Classification. In 2. Heenaye-Mamode Khan, M., Boodoo-Jahangeer, N., Dullull, W., Nathire, S., Gao, X., Sinha, G.R., and Nagwanshi, K.K. Multi-Class Classification of Breast Cancer Abnormalities using Deep Convolutional Neural Network (CNN). 3. Zhang Y.D., Satapathy S.C., Guttery D.S., Górriz J.M., andWang S.H.Improved Breast Cancer Classification through Combining Graph Convolutional Network and Convolutional Neural Network. 4. Albashish D.,Al-Sayyed, R., Abdullah, A., Ryalat, M.H., and Almansour, N.A. Deep CNN Model based on VGG16 for Breast Cancer Classification. In 5. Benhammou Y., Tabik S., Achchab B., andHerrera F.A First Study Exploring the Performance of the State-of-The Art CNN Model in the Problem of Breast Cancer. In 6. Gour M., Jain S., andSunil Kumar, T. Residual Learning Based CNN for Breast Cancer Histopathological Image Classification. 7. Gao F., Wu T., Li J., Zheng B., Ruan L., Shang D., andPatel B.SD-CNN: A Shallow-Deep CNN for Improved Breast Cancer Diagnosis. 8. Chiao J.Y., Chen K.Y., Liao K.Y.K., Hsieh, P.H., Zhang, G., and Huang, T.C. Detection and Classification the Breast Tumors using Mask R-CNN on Sonograms. 9. Choudhary V., Guha P., Pau G., Dhanaraj R.K., andMishra S.Automatic Classification of Cowpea Leaves using Deep Convolutional Neural Network. 10. Kumar A., Vishwakarma A., andBajaj V.Crccn-Net: Automated Framework for Classification of Colorectal Tissue using Histopathological Images. 11. Mewada H.K., Patel A.V., Hassaballah M., Alkinani M.H., andMahant K.Spectral-Spatial Features Integrated Convolution Neural Network for Breast Cancer Classification. 12. Sarvamangala, D.R. and Kulkarni, R.V.Convolutional Neural Networks in Medical Image Understanding: A Survey. 13. Zou Y., Zhang J., Huang S., andLiu B.Breast Cancer Histopathological Image Classification using Attention High‐Order Deep Network. 14. Nair N.B., Singh T., Thakur A., andDuraisamy P.Deployment of Breast Cancer Hybrid Net using Deep Learning. In 15. Jadah Z., Alfitouri A., Chantar H., Amarif M., andAeshah A.A.Breast Cancer Image Classification using Deep Convolutional Neural Networks. In 16. Afaq, S. and Jain, A.MAMMO-Net: An Approach for Classification of Breast Cancer using CNN with Gabor Filter in Mammographic Images. In 17. Tewari Y., Ujjwal E., andKumar L.Breast Cancer Classification using Machine Learning. In 18. Bhise S., Gadekar S., Gaur A.S., Bepari S., Kale D., andAswale S.Detection of Breast Cancer using Machine Learning and Deep Learning Methods. In 19. Juneja, K. and Rana, C.An Improved Weighted Decision Tree Approach for Breast Cancer Prediction. 20. Ma D., Shang L., Tang J., Bao Y., Fu J., andYin J.Classifying Breast Cancer Tissue by Raman Spectroscopy with One-Dimensional Convolutional Neural Network. 21. Samee N.A., Atteia G., Meshoul S., Al-antari, M.A., and Kadah, Y.M. Deep Learning Cascaded Feature Selection Framework for Breast Cancer Classification: Hybrid CNN with Univariate-Based Approach. 22. Liu K., Kang G., Zhang N., andHou B.Breast Cancer Classification based on Fully-Connected Layer First Convolutional Neural Networks. 23. Nguyen P.T., Nguyen T.T., Nguyen N.C., andLe T.T.Multiclass Breast Cancer Classification using Convolutional Neural Network. In 24. Hijab A., Rushdi M.A., Gomaa M.M., andEldeib A.Breast Cancer Classification in Ultrasound Images using Transfer Learning. In 25. Liang G., Wang X., Zhang Y., Xing X., Blanton H., Salem T., andJacobs N.Joint 2d-3d Breast Cancer Classification. In 26. Nawaz M., Sewissy A.A., andSoliman T.H.A. Multi-Class Breast Cancer Classification using Deep Learning Convolutional Neural Network. 27. Wang Y., Sun L., Ma K., andFang J.Breast Cancer Microscope Image Classification based on CNN with Image Deformation. In Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings 15, Springer International Publishing, pp. 845-852, 2018. 28. Roslidar R., Rahman A., Muharar R., Syahputra M.R., Arnia F., Syukri M., Pradhan B., andMunadi K.A Review on Recent Progress in Thermal Imaging and Deep Learning Approaches for Breast Cancer Detection. 29. Davoudi, K. and Thulasiraman, P.Evolving Convolutional Neural Network Parameters through the Genetic Algorithm for the Breast Cancer Classification Problem. 30. Ibraheem A.M., Rahouma K.H., andHamed H.F.3PCNNB-Net: Three Parallel CNN Branches for Breast Cancer Classification through Histopathological Images. 31. Araújo T., Aresta G., Castro E., Rouco J., Aguiar P., Eloy C., Polónia A., andCampilho A.Classification of Breast Cancer Histology Images using Convolutional Neural Networks. 32. Wang Y., Choi E.J., Choi Y., Zhang H., Jin G.Y., andKo S.B.Breast Cancer Classification in Automated Breast Ultrasound using Multiview Convolutional Neural Network with Transfer Learning. 33. Sharma S., Mehra R., andKumar S.Optimised CNN in Conjunction with Efficient Pooling Strategy for the Multi‐Classification of Breast Cancer. 34. Umer M.J., Sharif M., andWang S.H.Breast Cancer Classification and Segmentation Framework using Multiscale CNN and U‐Shaped Dual Decoded Attention Network. 35. Abdelrahman L.,Al Ghamdi, M., Collado-Mesa, F., and Abdel-Mottaleb, M. Convolutional Neural Networks for Breast Cancer Detection in Mammography: A Survey. 36. Yao H., Zhang X., Zhou X., andLiu S.Parallel Structure Deep Neural Network using CNN and RNN with an Attention Mechanism for Breast Cancer Histology Image Classification. 37. Wang Z., Li M., Wang H., Jiang H., Yao Y., Zhang H., andXin J.Breast Cancer Detection using Extreme Learning Machine based on Feature Fusion with CNN Deep Features. 38. Wang X., Ahmad I., Javeed D., Zaidi S.A., Alotaibi F.M., Ghoneim M.E., Daradkeh Y.I., Asghar J., andEldin E.T.Intelligent Hybrid Deep Learning Model for Breast Cancer Detection. |
[1] | Pancham Singh, Updesh Kumar Jaiswal, Eshank Jain, Nikhil Kumar, and Vimlesh Mishra. A Novel Methodology Utilizing Modern CCTV Cameras and Software as a Service Model for Crime Detection and Prediction [J]. Int J Performability Eng, 2025, 21(2): 112-121. |
[2] | Seema Kalonia and Amrita Upadhyay. Comparative Analysis of Machine Learning Model and PSO Optimized CNN-RNN for Software Fault Prediction [J]. Int J Performability Eng, 2025, 21(1): 48-55. |
[3] | Manu Banga. Enhancing Software Fault Prediction using Machine Learning [J]. Int J Performability Eng, 2024, 20(9): 529-540. |
[4] | Aditya Dayal Tyagi, and Krishna Asawa. Influence Maximization in Social Network using Community Detection and Node Modularity [J]. Int J Performability Eng, 2024, 20(9): 552-562. |
[5] | Ekta Singh, and Parma Nand. Efficient Multi-Class Facial Emotion Recognition using YOLOv9: A Deep Learning Approach for Real-Time Applications [J]. Int J Performability Eng, 2024, 20(9): 581-590. |
[6] | Manpreet Singh, Gauri Jindal, Akshita Oberoi, and Rohan Dhangar. Improving Crime Detection Through Geo-MDA: A Hybrid Linear Regression Approach in Data Mining [J]. Int J Performability Eng, 2024, 20(8): 469-477. |
[7] | Nilesh Shelke, Deepali Sale, Sagar Shinde, Atul Kathole, and Rachna Somkunwar. A Comprehensive Framework for Facial Emotion Detection using Deep Learning [J]. Int J Performability Eng, 2024, 20(8): 487-497. |
[8] | Lakshya Vaswani, Sai Sri Harsha, Subham Jaiswal, and Aju D. Unravelling Complexity: Investigating the Effectiveness of SHAP Algorithm for Improving Explainability in Network Intrusion System Across Machine and Deep Learning Models [J]. Int J Performability Eng, 2024, 20(7): 421-431. |
[9] | Rohit Kumar Verma and Sukhvir Singh. A Hybrid Framework of Resource Allocation using Firefly and Deep Learning in Big Data Scheduling [J]. Int J Performability Eng, 2024, 20(6): 333-343. |
[10] | Shikha Singh, Sumit Badotra, and Nitin Arvind Shelke. Applying Machine Learning Techniques for Comparative Analysis of Various Diseases [J]. Int J Performability Eng, 2024, 20(6): 379-390. |
[11] | Priya Singh and Rajalakshmi Krishnamurthi. AgriGuard: IoT-Powered Real-Time Object Detection and Alert System for Intelligent Surveillance [J]. Int J Performability Eng, 2024, 20(4): 232-241. |
[12] | Ujjwal Deep, Sushant Kumar, and Kanika Singla. Integrating Deep Learning Architectures for Enhanced Human Action Recognition: An Ensemble Approach [J]. Int J Performability Eng, 2024, 20(4): 253-262. |
[13] | Atul Kumar and Gurpreet Singh Lehal. Layout Detection of Punjabi Newspapers using the YOLOv8 Model [J]. Int J Performability Eng, 2024, 20(3): 186-193. |
[14] | Shou-Yu Lee, Yu-Sheng Chu, Tzu-Wei Hsu, I-Hsiang Yu, and W. Eric Wong. Enhanced Recognition Approach for Herb Medicine using YOLOv8 in Medical Information Systems [J]. Int J Performability Eng, 2024, 20(12): 713-722. |
[15] | Meenakshi Chawla and Meenakshi Pareek. Hybridizing Intelligence: A Comparative Study of Machine Learning Algorithm and ANN-PSO Deep Learning Model for Software Effort Estimation [J]. Int J Performability Eng, 2024, 20(11): 668-675. |
|