Int J Performability Eng ›› 2023, Vol. 19 ›› Issue (9): 579-586.doi: 10.23940/ijpe.23.09.p3.579586
Previous Articles Next Articles
Janarthanan Sekar* and Ganesh Kumar T
Contact:
*E-mail address: Janarthanan Sekar and Ganesh Kumar T. Hyperparameter Tuning in Deep Learning-Based Image Classification to Improve Accuracy using Adam Optimization [J]. Int J Performability Eng, 2023, 19(9): 579-586.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Kussul N., Lavreniuk M., Skakun S., andShelestov A.Deep Learning Classification of Land Cover and Crop Types using Remote Sensing Data. 2. Khatami R., Mountrakis G., andStehman S.V.A Meta-Analysis of Remote Sensing Research on Supervised Pixel-Based Land-Cover Image Classification Processes: General Guidelines for Practitioners and Future Research. 3. Gislason P.O., Benediktsson J.A., andSveinsson J.R.Random Forests for Land Cover Classification. 4. Zhang Z., Liu Q., andWang Y.Road Extraction by Deep Residual U-Net. 5. Roy S.K., Krishna G., Dubey S.R., andChaudhuri B.B.HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification. 6. Sun S., Mu L., Wang L., andLiu P. L-UNet: An LSTM Network for Remote Sensing Image Change Detection, 7. Celik T.Unsupervised Change Detection in Satellite Images using Principal Component Analysis and $k$-Means Clustering. 8. He, X. and Chen, Y.Optimized Input for CNN-Based Hyperspectral Image Classification using Spatial Transformer Network. 9. Chatterjee A., Saha J., Mukherjee J., Aikat S., andMisra A.Unsupervised Land Cover Classification of Hybrid and Dual-Polarized Images using Deep Convolutional Neural Network. 10. Romero A., Gatta C., andCamps-Valls, G. Unsupervised Deep Feature Extraction for Remote Sensing Image Classification. 11. Glorot, X. and Bengio, Y.Understanding the Difficulty of Training Deep Feedforward Neural Networks. In 12. Brownlee J.Code Adam Optimization Algorithm from Scratch.Machine Learning Mastery, 2021. 13. Ghorbanian, A. and Mohammadzadeh, A.An Unsupervised Feature Extraction Method based on Band Correlation Clustering for Hyperspectral Image Classification using Limited Training Samples. 14. Song J., Gao S., Zhu Y., andMa C.A Survey of Remote Sensing Image Classification based on CNNs. 15. Wei Y., Luo X., Hu L., Peng Y., andFeng J.An Improved Unsupervised Representation Learning Generative Adversarial Network for Remote Sensing Image Scene Classification. 16. Cong M., Wang Z., Tao Y., Xi J., Ren C., andXu M.Unsupervised Self-Adaptive Deep Learning Classification Network based on the Optic Nerve Microsaccade Mechanism for Unmanned Aerial Vehicle Remote Sensing Image Classification. 17. Adepoju, K.A. and Adelabu, S.A.Improving Accuracy of Landsat-8 OLI Classification using Image Composite and Multisource Data with Google Earth Engine. 18. Chatterjee A., Saha J., Mukherjee J., Aikat S., andMisra A.Unsupervised Land Cover Classification of Hybrid and Dual-Polarized Images using Deep Convolutional Neural Network. 19. Wu Y., Zhang P., Wu J., andLi C.Object-Oriented and Deep-Learning-Based High-Resolution Mapping from Large Remote Sensing Imagery. 20. Zhang X., Tan X., Chen G., Zhu K., Liao P., andWang T.Object-Based Classification Framework of Remote Sensing Images with Graph Convolutional Networks. 21. Zhang X., Wang Q., Chen G., Dai F., Zhu K., Gong Y., andXie Y.An Object-Based Supervised Classification Framework for Very-High-Resolution Remote Sensing Images using Convolutional Neural Networks. 22. Shi S., Zhong Y., Zhao J., Lv P., Liu Y., andZhang L.Land-Use/Land-Cover Change Detection based on Class-Prior Object-Oriented Conditional Random Field Framework for High Spatial Resolution Remote Sensing Imagery. 23. Yu X., Fan J., Chen J., Zhang P., Zhou Y., andHan L.NestNet: A Multiscale Convolutional Neural Network for Remote Sensing Image Change Detection. 24. Alem, A. and Kumar, S.Deep Learning Models Performance Evaluations for Remote Sensed Image Classification. 25. Zahid U., Ashraf I., Khan M.A., Alhaisoni M., Yahya K.M., Hussein H.S., andAlshazly H.BrainNet: Optimal Deep Learning Feature Fusion for Brain Tumor Classification. 26. Yang B., Hu S., Guo Q., andHong D.Multisource Domain Transfer Learning based on Spectral Projections for Hyperspectral Image Classification. 27. Mahdianpari M., Salehi B., Rezaee M., Mohammadimanesh F., andZhang Y.Very Deep Convolutional Neural Networks for Complex Land Cover Mapping using Multispectral Remote Sensing Imagery. 28. Maggiori E., Tarabalka Y., Charpiat G., andAlliez P.Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. 29. Zhu Q., Deng W., Zheng Z., Zhong Y., Guan Q., Lin W., Zhang L., andLi D.A Spectral-Spatial-Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification. 30. Feng Y., Song R., Ni W., Zhu J., andWang X.A Novel Semi-Supervised Long-Tailed Learning Framework with Spatial Neighborhood Information for Hyperspectral Image Classification. 31. Gao K., Liu B., Yu X., andYu A.Unsupervised Meta Learning with Multiview Constraints for Hyperspectral Image Small Sample Set Classification. 32. Chugh R.S., Bhatia V., Khanna K., andBhatia V.A Comparative Analysis of Classifiers for Image Classification. In 33. Chen K., Li W., Chen J., Zou Z., andShi Z.Resolution-Agnostic Remote Sensing Scene Classification with Implicit Neural Representations. 34. Zhao Z., Li J., Luo Z., Li J., andChen C.Remote Sensing Image Scene Classification based on an Enhanced Attention Module. 35. Wei J., Mi L., Hu Y., Ling J., Li Y., andChen Z.Effects of Lossy Compression on Remote Sensing Image Classification based on Convolutional Sparse Coding. 36. Huang X., Sun Y., Feng S., Ye Y., andLi X.Better Visual Interpretation for Remote Sensing Scene Classification. 37. Liu S.J., Luo H., andShi Q.Active Ensemble Deep Learning for Polarimetric Synthetic Aperture Radar Image Classification. 38. Shi J., Liu W., Shan H., Li E., Li X., andZhang L.Remote Sensing Scene Classification based on Multibranch Fusion Attention Network. 39. Maxwell A.E., Warner T.A., andFang F.Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. 40. Dou, P. and Chen, Y.Remote Sensing Imagery Classification using AdaBoost with a Weight Vector (WV AdaBoost). 41. Bera, S. and Shrivastava, V.K.Analysis of Various Optimizers on Deep Convolutional Neural Network Model in the Application of Hyperspectral Remote Sensing Image Classification. |
[1] | Sanjay Razdan, Himanshu Gupta, and Ashish Seth. D-SVM: A Deep Support Vector Machine Model with Different Kernel Types for Improved Intrusion Detection Performance [J]. Int J Performability Eng, 2023, 19(9): 598-606. |
[2] | Aashita Rajput, Muskan Yadav, Sachin Yadav, Megha Chhabra, and Arun Prakash Agarwal. Patch-Based Breast Cancer Histopathological Image Classification using Deep Learning [J]. Int J Performability Eng, 2023, 19(9): 607-623. |
[3] | Kavita Pandey, and Dhiraj Pandey. Real-Time Crop Disease Detection and Remedial Suggestion through Deep Learning-based Smartphone Application [J]. Int J Performability Eng, 2023, 19(8): 491-498. |
[4] | Savita Khurana, Gaurav Sharma, and Bhawna Sharma. Hybrid Machine Learning Model for Load Prediction in Cloud Environment [J]. Int J Performability Eng, 2023, 19(8): 507-515. |
[5] | Rakesh Kumar, Sunny Arora, Ashima Arya, Neha Kohli, Vaishali Arya, and Ekta Singh. Ensemble Learning for Appraising English Text Readability using Gompertz Function [J]. Int J Performability Eng, 2023, 19(6): 388-396. |
[6] | Manvi Khatri and Ajay Sharma. Deep Learning Approach based on Iris, Face, and Palmprint Fusion for Multimodal Biometric Recognition System [J]. Int J Performability Eng, 2023, 19(6): 407-416. |
[7] | Shreshtha Singh and Arun Sharma. State of the Art Convolutional Neural Networks [J]. Int J Performability Eng, 2023, 19(5): 342-349. |
[8] | Vaishali Arya and Tapas Kumar. Boosting X-Ray Scans Feature for Enriched Diagnosis of Pediatric Pneumonia using Deep Learning Models [J]. Int J Performability Eng, 2023, 19(3): 175-183. |
[9] | Shalaka Prasad Deore. SongRec: A Facial Expression Recognition System for Song Recommendation using CNN [J]. Int J Performability Eng, 2023, 19(2): 115-121. |
[10] | Shikha Choudhary and Bhawna Saxena. Image-Based Crop Disease Detection using Machine Learning Approaches: A Survey [J]. Int J Performability Eng, 2023, 19(2): 122-132. |
[11] | Priti Kumari and Parmeet Kaur. An Adaptable Approach to Fault Tolerance in Cloud Computing [J]. Int J Performability Eng, 2023, 19(1): 43-54. |
[12] | Sachin Aggarwal and Smriti Sehgal. Text Independent Data-Level Fusion Network for Multimodal Sentiment Analysis [J]. Int J Performability Eng, 2022, 18(9): 605-612. |
[13] | Mansi Mahendru and Sanjay Kumar Dubey. Portable Learning Approach towards Capturing Social Intimidating Activities using Big Data and Deep Learning Technologies [J]. Int J Performability Eng, 2022, 18(9): 668-678. |
[14] | Sandhya Alagarsamy and Visumathi James. RNN LSTM-based Deep Hybrid Learning Model for Text Classification using Machine Learning Variant XGBoost [J]. Int J Performability Eng, 2022, 18(8): 545-551. |
[15] | K. Lavanya, Smrithi Prakash, Yash Gedam, Altamash Aijaz, and L. Ramanathan. Real Time Digital Face Mask Detection using MobileNet-V2 and SSD with Apache Spark [J]. Int J Performability Eng, 2022, 18(8): 598-604. |
|