Int J Performability Eng ›› 2023, Vol. 19 ›› Issue (3): 175-183.doi: 10.23940/ijpe.23.03.p3.175183
Previous Articles Next Articles
Vaishali Arya* and Tapas Kumar
Contact:
* E-mail address: vaishali.arya05@gmail.com
Vaishali Arya and Tapas Kumar. Boosting X-Ray Scans Feature for Enriched Diagnosis of Pediatric Pneumonia using Deep Learning Models [J]. Int J Performability Eng, 2023, 19(3): 175-183.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Ayan E., Karabulut B., andÜnver H.M.Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images. Arabian Journal for Science and Engineering, pp. 1-17, 2022. 2. McAllister D.A., Liu L., Shi T., Chu Y., Reed C., Burrows J., Adeloye D., Rudan I., Black R.E., Campbell H., andNair, H. Global Regional, and National Estimates of Pneumonia Morbidity and Mortality in Children Younger Than 5 Years Between2000 and 2015: A Systematic Analysis. The Lancet Global Health, vol. 7, no. 1, pp. e47-e57, 2019. 3. Drake D.E., Cohen A., andCohn J.National Hospital Antibiotic Timing Measures for Pneumonia and Antibiotic Overuse. Quality Management in Healthcare, vol. 16, no. 2, pp. 113-122, 2007. 4. World Health Organization.Standardization of interpretation of chest radiographs for the diagnosis of pneumonia in children, no. WHO/V&B/01.35, 2001. 5. Ker J., Wang L., Rao J., andLim T.Deep Learning Applications in Medical Image Analysis. IEEE Access, no. 6, pp. 9375-9389, 2017. 6. Neuman M.I., Lee E.Y., Bixby S., Diperna S., Hellinger J., Markowitz R., Servaes S., Monuteaux M.C., andShah S.S.Variability in the Interpretation of Chest Radiographs for the Diagnosis of Pneumonia in Children. Journal of hospital medicine, vol. 7, no. 4, pp. 294-298, 2012. 7. Loey M., Smarandache F., andM. Khalifa, N.E. Within the Lack of Chest COVID-19 X-Ray Dataset: A Novel Detection Model based on GAN and Deep Transfer Learning. Symmetry, vol. 12, no. 4, pp. 651, 2020. 8. Batra S., Sharma H., Boulila W., Arya V., Srivastava P., Khan M.Z., andKrichen M.An Intelligent Sensor Based Decision Support System for Diagnosing Pulmonary Ailment through Standardized Chest X-Ray Scans. Sensors, vol. 22, no. 19, pp. 7474, 2022. 9. Shen D., Wu G., andSuk H.I.Deep Learning in Medical Image Analysis. Annual review of biomedical engineering, vol. 19, pp. 221-248, 2017. 10. Grewal M., Srivastava M.M., Kumar P., andVaradarajan, S. Radnet: Radiologist Level Accuracy using Deep Learning for Hemorrhage Detection in CT Scans. In2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, pp. 281-284, 2018. 11. Mazurowski M.A., Buda M., Saha A., andBashir M.R.Deep Learning in Radiology: An Overview of the Concepts and a Survey of the State of the Art with Focus on MRI. Journal of magnetic resonance imaging, vol. 49, no. 4, pp. 939-954, 2019. 12. Batra S., Khurana R., Khan M.Z., Boulila W., Koubaa A., andSrivastava P.A Pragmatic Ensemble Strategy for Missing Values Imputation in Health Records. Entropy, vol. 24, no. 4, pp. 533, 2022. 13. Tai S.C., Liao T.W., Chang Y.Y., andYeh, C.P. Automatic White Balance Algorithm through the Average Equalization and Threshold. In2012 8th International Conference on Information Science and Digital Content Technology (ICIDT2012), IEEE, vol. 3, pp. 571-576, 2012. 14. Huo J.Y., Chang Y.L., Wang J., andWei X.X.Robust Automatic White Balance Algorithm using Gray Color Points in Images. IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 541-546, 2006. 15. Kim S., Kim W.J., andKim, S.D. Automatic White Balance based on Adaptive Feature Selection with Standard Illuminants. In2008 15th IEEE International Conference on Image Processing, IEEE, pp. 485-488, 2008. 16. Lam, E.Y. Combining Gray World and Retinex Theory for Automatic White Balance in Digital Photography. In Proceedings of the Ninth International Symposium on Consumer Electronics (ISCE2005), IEEE, pp. 134-139, 2005. 17. Bae Y., Jang J.H., andRa, J.B. Gamut-Adaptive Correction in Color Image Processing. In2010 IEEE International Conference on Image Processing, IEEE, pp. 3597-3600, 2010. 18. Chen, C.L. and Lin, S.H.Intelligent Color Temperature Estimation using Fuzzy Neural Network with Application to Automatic White Balance. Expert Systems with Applications, vol. 38, no. 6, pp. 7718-7728, 2011. 19. Sanila K.H., Balakrishnan A.A., andSupriya, M.H. Underwater Image Enhancement using White Balance, USM and CLHE. In2019 International Symposium on Ocean Technology (SYMPOL), IEEE, pp. 106-116, 2019. 20. Albahli S., Rauf H.T., Algosaibi A., andBalas V.E.AI-Driven Deep CNN Approach for Multi-Label Pathology Classification using Chest X-Rays. PeerJ Computer Science, vol.7, p.e495, 2021. 21. Chandra, T.B. and Verma, K. Pneumonia Detection on Chest X-Ray using Machine Learning Paradigm. In Proceedings of 3rd International Conference on Computer Vision and Image Processing: CVIP2018, Springer Singapore, vol. 1, pp. 21-33, 2020. 22. Kuo K.M., Talley P.C., Huang C.H., andCheng L.C.Predicting Hospital-Acquired Pneumonia Among Schizophrenic Patients: A Machine Learning Approach. BMC Medical Informatics and Decision Making, vol. 19, no. 1, pp.1-8, 2019. 23. Yue H., Yu Q., Liu C., Huang Y., Jiang Z., Shao C., Zhang H., Ma B., Wang Y., Xie G., andZhang H.Machine Learning-Based CT Radiomics Method for Predicting Hospital Stay in Patients with Pneumonia Associated with SARS-CoV-2 Infection: A Multicenter Study. Annals of translational medicine, vol. 8, no. 14, 2020. 24. Kadry S., Nam Y., Rauf H.T., Rajinikanth V., andLawal, I.A. Automated Detection of Brain Abnormality using Deep-Learning-Scheme: A Study. In2021 seventh international conference on bio signals, images, and instrumentation (ICBSII), IEEE, pp. 1-5, 2021. 25. Sharma H., Jain J.S., Bansal P., andGupta S. Feature Extraction and Classification of Chest X-Ray Images using CNN to Detect Pneumonia. In2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), IEEE, pp. 227-231, 2020. 26. Stephen O., Sain M., Maduh U.J., andJeong D.U.An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. Journal of healthcare engineering, 2019. 27. Kermany D., Zhang K., andGoldbaum M.Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification. Mendeley data, vol. 2, no. 2, pp. 651, 2018. 28. Rajpurkar P., Irvin J., Zhu K., Yang B., Mehta H., Duan T., Ding D., Bagul A., Langlotz C., Shpanskaya K., andLungren, M.P. Chexnet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv preprint arXiv:1711.05225, 2017. 29. Janizek J.D., Erion G., DeGrave, A.J., and Lee, S.I. An Adversarial Approach for the Robust Classification of Pneumonia from Chest Radiographs. In Proceedings of the ACM conference on health, inference, and learning, pp. 69-79, 2020. 30. Zhang J., Xie Y., Pang G., Liao Z., Verjans J., Li W., Sun Z., He J., Li Y., Shen C., andXia Y.Viral Pneumonia Screening on Chest X-Rays using Confidence-Aware Anomaly Detection. IEEE transactions on medical imaging, vol. 40, no. 3, pp. 879-890, 2020. 31. Tuncer T., Ozyurt F., Dogan S., andSubasi A.A Novel Covid-19 and Pneumonia Classification Method based on F-Transform. Chemometrics and intelligent laboratory systems, vol. 210, pp. 104256, 2021. 32. Rahman T., Chowdhury M.E., Khandakar A., Islam K.R., Islam K.F., Mahbub Z.B., Kadir M.A., andKashem S.Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-Ray. Applied Sciences, vol. 10, no. 9, pp. 3233, 2020. 33. Liang, G. and Zheng, L.A Transfer Learning Method with Deep Residual Network for Pediatric Pneumonia Diagnosis. Computer methods and programs in biomedicine, vol. 187, pp. 104964, 2020. 34. Ibrahim A.U., Ozsoz M., Serte S., Al-Turjman, F., and Yakoi, P.S. Pneumonia Classification using Deep Learning from Chest X-Ray Images During COVID-19. Cognitive Computation, pp. 1-13, 2021. 35. Deng J., Dong W., Socher R., Li L.J., Li K., andFei-Fei, L. Imagenet: A Large-Scale Hierarchical Image Database. In2009 IEEE conference on computer vision and pattern recognition, IEEE, pp. 248-255, 2009. 36. White Balance, https://docs.gimp.org/2.10/en/gimp-layer-white-balance.html, accessed on November 18, 2022. 37. Reza A.M.Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. Journal of VLSI signal processing systems for signal, image and video technology, vol. 38, pp. 35-44, 2004. 38. Pizer S.M., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T., ter Haar Romeny, B., Zimmerman, J.B., and Zuiderveld, K. Adaptive Histogram Equalization and Its Variations. Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355-368, 1987. 39. Pizer S.M.Contrast-Limited Adaptive Histogram Equalization: Speed and Effectiveness Stephen M. Pizer, R. Eugene Johnston, James P. Ericksen, Bonnie C. Yankaskas, Keith E. Muller Medical Image Display Research Group. In Proceedings of the first conference on visualization in biomedical computing, Atlanta, Georgia, vol. 337, pp. 1, 1990. 40. Wang, J. and Perez, L.The Effectiveness of Data Augmentation in Image Classification using Deep Learning. Convolutional Neural Networks Vis. Recognit, vol. 11, no. 2017, pp. 1-8, 2017. 41. Nijaguna G.S., Babu J.A., Parameshachari B.D., de Prado, R.P., and Frnda, J. Quantum Fruit Fly Algorithm and ResNet50-VGG16 for Medical Diagnosis. Applied Soft Computing, vol. 136, pp. 110055, 2023. 42. Li J., Ke L., Du Q., Ding X., andChen X.Research on the Classification of ECG and PCG Signals based on BiLSTM-GoogLeNet-DS. Applied Sciences, vol. 12, no. 22, pp. 11762, 2022. 43. Alsharabi N., Shahwar T., Rehman A.U., andAlharbi Y.Implementing Magnetic Resonance Imaging Brain Disorder Classification via AlexNet-Quantum Learning. Mathematics, vol. 11, no. 2, pp. 376, 2023. 44. Mao W.L., Chen W.C., Wang C.T., andLin Y.H.Recycling Waste Classification using Optimized Convolutional Neural Network. Resources, Conservation and Recycling, vol. 164, pp. 105132, 2021. 45. Kumar S., Gupta S.K., Kaur M., andGupta U.VI-NET: A Hybrid Deep Convolutional Neural Network using VGG and Inception V3 Model for Copy-Move Forgery Classification. Journal of Visual Communication and Image Representation, vol. 89, pp. 103644, 2022. 46. Sun T., Ding S., andGuo L.Low-Degree Term First in ResNet, Its Variants and the Whole Neural Network Family. Neural Networks, vol. 148, pp. 155-165, 2022. 47. MS, M. and SS, S.R.Optimal Squeeze Net with Deep Neural Network-Based Arial Image Classification Model in Unmanned Aerial Vehicles. Traitement du Signal, vol. 39, no. 1, 2022. 48. Hidayatullah, R.C. and Violina, S.Convolutional Neural Network Architecture and Data Augmentation for Pneumonia Classification from Chest X-Rays Images. Int J Innov Sci Res Technol, vol. 5, pp. 158-164, 2020. |
[1] | Shalaka Prasad Deore. SongRec: A Facial Expression Recognition System for Song Recommendation using CNN [J]. Int J Performability Eng, 2023, 19(2): 115-121. |
[2] | Shikha Choudhary and Bhawna Saxena. Image-Based Crop Disease Detection using Machine Learning Approaches: A Survey [J]. Int J Performability Eng, 2023, 19(2): 122-132. |
[3] | Priti Kumari and Parmeet Kaur. An Adaptable Approach to Fault Tolerance in Cloud Computing [J]. Int J Performability Eng, 2023, 19(1): 43-54. |
[4] | Sachin Aggarwal and Smriti Sehgal. Text Independent Data-Level Fusion Network for Multimodal Sentiment Analysis [J]. Int J Performability Eng, 2022, 18(9): 605-612. |
[5] | Mansi Mahendru and Sanjay Kumar Dubey. Portable Learning Approach towards Capturing Social Intimidating Activities using Big Data and Deep Learning Technologies [J]. Int J Performability Eng, 2022, 18(9): 668-678. |
[6] | Sandhya Alagarsamy and Visumathi James. RNN LSTM-based Deep Hybrid Learning Model for Text Classification using Machine Learning Variant XGBoost [J]. Int J Performability Eng, 2022, 18(8): 545-551. |
[7] | K. Lavanya, Smrithi Prakash, Yash Gedam, Altamash Aijaz, and L. Ramanathan. Real Time Digital Face Mask Detection using MobileNet-V2 and SSD with Apache Spark [J]. Int J Performability Eng, 2022, 18(8): 598-604. |
[8] | Rajan Prasad Tripathi, Sunil Kumar Khatri, and Darelle Van Greunen. Relative Examination of Breast Malignant Growth Analysis Utilizing Different Machine Learning Algorithms [J]. Int J Performability Eng, 2022, 18(6): 417-425. |
[9] | Poonam Narang, Ajay Vikram Singh, and Himanshu Monga. Hybrid Metaheuristic Approach for Detection of Fake News on Social Media [J]. Int J Performability Eng, 2022, 18(6): 434-443. |
[10] | Dan Lu and Shunkun Yang*. A Survey of the Analysis of Complex Systems based on Complex Network Theory and Deep Learning [J]. Int J Performability Eng, 2022, 18(4): 241-250. |
[11] | Shobhanam Krishna and Sumati Sidharth. HR Analytics: Employee Attrition Analysis using Random Forest [J]. Int J Performability Eng, 2022, 18(4): 275-281. |
[12] | Sukruta Pardeshi, chetana Khairnar, and Khalid Alfatmi. Analysis of Data Handling Challenges in Edge Computing [J]. Int J Performability Eng, 2022, 18(3): 176-187. |
[13] | Geetanjali S. Mahamunkar, Arvind W. Kiwelekar, and Laxman D. Netak. Deep Learning Model for Black Spot Classification [J]. Int J Performability Eng, 2022, 18(3): 222-230. |
[14] | Richa Sharma and Shailendra Narayan Singh. Towards Accurate Heart Disease Prediction System: An Enhanced Machine Learning Approach [J]. Int J Performability Eng, 2022, 18(2): 136-148. |
[15] | Mamta Bhamare, and K Ashokkumar. Personality Prediction through Social Media Posts [J]. Int J Performability Eng, 2022, 18(11): 817-825. |
|