Int J Performability Eng ›› 2023, Vol. 19 ›› Issue (9): 607-623.doi: 10.23940/ijpe.23.09.p6.607623
Previous Articles Next Articles
Aashita Rajput, Muskan Yadav, Sachin Yadav, Megha Chhabra*, and Arun Prakash Agarwal
Contact:
*E-mail address: Aashita Rajput, Muskan Yadav, Sachin Yadav, Megha Chhabra, and Arun Prakash Agarwal. Patch-Based Breast Cancer Histopathological Image Classification using Deep Learning [J]. Int J Performability Eng, 2023, 19(9): 607-623.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Roslidar R., Saddami K., Arnia F., Syukri M., andMunadi K.A Study of Fine-Tuning CNN Models based on Thermal Imaging for Breast Cancer Classification. In 2. Heenaye-Mamode Khan, M., Boodoo-Jahangeer, N., Dullull, W., Nathire, S., Gao, X., Sinha, G.R., and Nagwanshi, K.K. Multi-Class Classification of Breast Cancer Abnormalities using Deep Convolutional Neural Network (CNN). 3. Zhang Y.D., Satapathy S.C., Guttery D.S., Górriz J.M., andWang S.H.Improved Breast Cancer Classification through Combining Graph Convolutional Network and Convolutional Neural Network. 4. Albashish D.,Al-Sayyed, R., Abdullah, A., Ryalat, M.H., and Almansour, N.A. Deep CNN Model based on VGG16 for Breast Cancer Classification. In 5. Benhammou Y., Tabik S., Achchab B., andHerrera F.A First Study Exploring the Performance of the State-of-The Art CNN Model in the Problem of Breast Cancer. In 6. Gour M., Jain S., andSunil Kumar, T. Residual Learning Based CNN for Breast Cancer Histopathological Image Classification. 7. Gao F., Wu T., Li J., Zheng B., Ruan L., Shang D., andPatel B.SD-CNN: A Shallow-Deep CNN for Improved Breast Cancer Diagnosis. 8. Chiao J.Y., Chen K.Y., Liao K.Y.K., Hsieh, P.H., Zhang, G., and Huang, T.C. Detection and Classification the Breast Tumors using Mask R-CNN on Sonograms. 9. Choudhary V., Guha P., Pau G., Dhanaraj R.K., andMishra S.Automatic Classification of Cowpea Leaves using Deep Convolutional Neural Network. 10. Kumar A., Vishwakarma A., andBajaj V.Crccn-Net: Automated Framework for Classification of Colorectal Tissue using Histopathological Images. 11. Mewada H.K., Patel A.V., Hassaballah M., Alkinani M.H., andMahant K.Spectral-Spatial Features Integrated Convolution Neural Network for Breast Cancer Classification. 12. Sarvamangala, D.R. and Kulkarni, R.V.Convolutional Neural Networks in Medical Image Understanding: A Survey. 13. Zou Y., Zhang J., Huang S., andLiu B.Breast Cancer Histopathological Image Classification using Attention High‐Order Deep Network. 14. Nair N.B., Singh T., Thakur A., andDuraisamy P.Deployment of Breast Cancer Hybrid Net using Deep Learning. In 15. Jadah Z., Alfitouri A., Chantar H., Amarif M., andAeshah A.A.Breast Cancer Image Classification using Deep Convolutional Neural Networks. In 16. Afaq, S. and Jain, A.MAMMO-Net: An Approach for Classification of Breast Cancer using CNN with Gabor Filter in Mammographic Images. In 17. Tewari Y., Ujjwal E., andKumar L.Breast Cancer Classification using Machine Learning. In 18. Bhise S., Gadekar S., Gaur A.S., Bepari S., Kale D., andAswale S.Detection of Breast Cancer using Machine Learning and Deep Learning Methods. In 19. Juneja, K. and Rana, C.An Improved Weighted Decision Tree Approach for Breast Cancer Prediction. 20. Ma D., Shang L., Tang J., Bao Y., Fu J., andYin J.Classifying Breast Cancer Tissue by Raman Spectroscopy with One-Dimensional Convolutional Neural Network. 21. Samee N.A., Atteia G., Meshoul S., Al-antari, M.A., and Kadah, Y.M. Deep Learning Cascaded Feature Selection Framework for Breast Cancer Classification: Hybrid CNN with Univariate-Based Approach. 22. Liu K., Kang G., Zhang N., andHou B.Breast Cancer Classification based on Fully-Connected Layer First Convolutional Neural Networks. 23. Nguyen P.T., Nguyen T.T., Nguyen N.C., andLe T.T.Multiclass Breast Cancer Classification using Convolutional Neural Network. In 24. Hijab A., Rushdi M.A., Gomaa M.M., andEldeib A.Breast Cancer Classification in Ultrasound Images using Transfer Learning. In 25. Liang G., Wang X., Zhang Y., Xing X., Blanton H., Salem T., andJacobs N.Joint 2d-3d Breast Cancer Classification. In 26. Nawaz M., Sewissy A.A., andSoliman T.H.A. Multi-Class Breast Cancer Classification using Deep Learning Convolutional Neural Network. 27. Wang Y., Sun L., Ma K., andFang J.Breast Cancer Microscope Image Classification based on CNN with Image Deformation. In Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings 15, Springer International Publishing, pp. 845-852, 2018. 28. Roslidar R., Rahman A., Muharar R., Syahputra M.R., Arnia F., Syukri M., Pradhan B., andMunadi K.A Review on Recent Progress in Thermal Imaging and Deep Learning Approaches for Breast Cancer Detection. 29. Davoudi, K. and Thulasiraman, P.Evolving Convolutional Neural Network Parameters through the Genetic Algorithm for the Breast Cancer Classification Problem. 30. Ibraheem A.M., Rahouma K.H., andHamed H.F.3PCNNB-Net: Three Parallel CNN Branches for Breast Cancer Classification through Histopathological Images. 31. Araújo T., Aresta G., Castro E., Rouco J., Aguiar P., Eloy C., Polónia A., andCampilho A.Classification of Breast Cancer Histology Images using Convolutional Neural Networks. 32. Wang Y., Choi E.J., Choi Y., Zhang H., Jin G.Y., andKo S.B.Breast Cancer Classification in Automated Breast Ultrasound using Multiview Convolutional Neural Network with Transfer Learning. 33. Sharma S., Mehra R., andKumar S.Optimised CNN in Conjunction with Efficient Pooling Strategy for the Multi‐Classification of Breast Cancer. 34. Umer M.J., Sharif M., andWang S.H.Breast Cancer Classification and Segmentation Framework using Multiscale CNN and U‐Shaped Dual Decoded Attention Network. 35. Abdelrahman L.,Al Ghamdi, M., Collado-Mesa, F., and Abdel-Mottaleb, M. Convolutional Neural Networks for Breast Cancer Detection in Mammography: A Survey. 36. Yao H., Zhang X., Zhou X., andLiu S.Parallel Structure Deep Neural Network using CNN and RNN with an Attention Mechanism for Breast Cancer Histology Image Classification. 37. Wang Z., Li M., Wang H., Jiang H., Yao Y., Zhang H., andXin J.Breast Cancer Detection using Extreme Learning Machine based on Feature Fusion with CNN Deep Features. 38. Wang X., Ahmad I., Javeed D., Zaidi S.A., Alotaibi F.M., Ghoneim M.E., Daradkeh Y.I., Asghar J., andEldin E.T.Intelligent Hybrid Deep Learning Model for Breast Cancer Detection. |
[1] | Janarthanan Sekar and Ganesh Kumar T. Hyperparameter Tuning in Deep Learning-Based Image Classification to Improve Accuracy using Adam Optimization [J]. Int J Performability Eng, 2023, 19(9): 579-586. |
[2] | Sanjay Razdan, Himanshu Gupta, and Ashish Seth. D-SVM: A Deep Support Vector Machine Model with Different Kernel Types for Improved Intrusion Detection Performance [J]. Int J Performability Eng, 2023, 19(9): 598-606. |
[3] | C. Rohith Bhat and Madhusundar Nelson. Artificial Intelligence Based Credit Card Fraud Detection for Online Transactions Optimized with Sparrow Search Algorithm [J]. Int J Performability Eng, 2023, 19(9): 624-632. |
[4] | Kavita Pandey, and Dhiraj Pandey. Real-Time Crop Disease Detection and Remedial Suggestion through Deep Learning-based Smartphone Application [J]. Int J Performability Eng, 2023, 19(8): 491-498. |
[5] | Savita Khurana, Gaurav Sharma, and Bhawna Sharma. Hybrid Machine Learning Model for Load Prediction in Cloud Environment [J]. Int J Performability Eng, 2023, 19(8): 507-515. |
[6] | Manvi Khatri and Ajay Sharma. Deep Learning Approach based on Iris, Face, and Palmprint Fusion for Multimodal Biometric Recognition System [J]. Int J Performability Eng, 2023, 19(6): 407-416. |
[7] | Shreshtha Singh and Arun Sharma. State of the Art Convolutional Neural Networks [J]. Int J Performability Eng, 2023, 19(5): 342-349. |
[8] | Vaishali Arya and Tapas Kumar. Boosting X-Ray Scans Feature for Enriched Diagnosis of Pediatric Pneumonia using Deep Learning Models [J]. Int J Performability Eng, 2023, 19(3): 175-183. |
[9] | Shikha Choudhary and Bhawna Saxena. Image-Based Crop Disease Detection using Machine Learning Approaches: A Survey [J]. Int J Performability Eng, 2023, 19(2): 122-132. |
[10] | Kanika Wadhwa, Shreshtha Singh, Arun Sharma, and Swaty Wadhwa. Machine Learning-Based Breast Cancer Prediction Model [J]. Int J Performability Eng, 2023, 19(1): 55-63. |
[11] | Sonika Jindal, Monika Sachdeva, and Alok Kumar Singh Kushwaha. Human Activity Recognition using Ensemble Convolutional Neural Networks and Long Short-Term Memory [J]. Int J Performability Eng, 2022, 18(9): 660-667. |
[12] | Mansi Mahendru and Sanjay Kumar Dubey. Portable Learning Approach towards Capturing Social Intimidating Activities using Big Data and Deep Learning Technologies [J]. Int J Performability Eng, 2022, 18(9): 668-678. |
[13] | Sandhya Alagarsamy and Visumathi James. RNN LSTM-based Deep Hybrid Learning Model for Text Classification using Machine Learning Variant XGBoost [J]. Int J Performability Eng, 2022, 18(8): 545-551. |
[14] | K. Lavanya, Smrithi Prakash, Yash Gedam, Altamash Aijaz, and L. Ramanathan. Real Time Digital Face Mask Detection using MobileNet-V2 and SSD with Apache Spark [J]. Int J Performability Eng, 2022, 18(8): 598-604. |
[15] | Rajan Prasad Tripathi, Sunil Kumar Khatri, and Darelle Van Greunen. Relative Examination of Breast Malignant Growth Analysis Utilizing Different Machine Learning Algorithms [J]. Int J Performability Eng, 2022, 18(6): 417-425. |
|