[1] Priyadarshinee P., Raut R.D., Jha M.K., andGardas B.B., 2017. Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM-neural networks approach.Computers in Human Behavior, 76, pp. 341-362. [2] Mao C., Lin R., Xu C., andHe Q., 2017. Towards a trust prediction framework for cloud services based on PSO-driven neural network.IEEE Access, 5, pp. 2187-2199. [3] Marudhadevi D., Dhatchayani V.N., andSriram V.S., 2015. A trust evaluation model for cloud computing using service level agreement. the Computer Journal,58(10), pp. 2225-2232. [4] Pal K., andKarakostas B., 2014. A multi agent-based service framework for supply chain management.Procedia Computer Science, 32, pp. 53-60. [5] Singh S., andChana I., 2015. Q-aware: quality of service based cloud resource provisioning.Computers & Electrical Engineering, 47, pp. 138-160. [6] Ghosh N., Ghosh S.K., andDas S.K., 2014. SelCSP: A framework to facilitate selection of cloud service providers. IEEE Transactions on Cloud Computing,3(1), pp. 66-79. [7] Bothra S.K., andSinghal S., 2021. Nature-inspired metaheuristic scheduling algorithms in cloud: A systematic review. Научно-технический вестник информационных технологий, механики и оптики,21(4), pp. 463-472. [8] Singh H., Tyagi S., Kumar P., Gill S.S., andBuyya R., 2021. Metaheuristics for scheduling of heterogeneous tasks in cloud computing environments: analysis, performance evaluation, and future directions.Simulation Modelling Practice and Theory, 111, 102353. [9] Nagpal S., Dahiya N., andDalal S., 2018. Comparison of task scheduling in cloud computing using various optimization algorithms.Journal of Computational Information Systems ISSN, pp. 1553-9105. [10] Caton S., Dukat C., Grenz T., Haas C., Pfadenhauer M., andWeinhardt C., 2012. Foundations of trust: contextualising trust in social clouds. In2012 Second International Conference on Cloud and Green Computing, pp. 424-429. [11] Macias M., andGuitart J., 2016. Analysis of a trust model for SLA negotiation and enforcement in cloud markets.Future Generation Computer Systems, 55, pp. 460-472. [12] Yan Z., Li X., Wang M., andVasilakos A.V., 2015. Flexible data access control based on trust and reputation in cloud computing. IEEE Transactions on Cloud Computing,5(3), pp. 485-498. [13] Wang H., Yang D., Yu Q., andTao Y., 2018. Integrating modified cuckoo algorithm and creditability evaluation for QoS-aware service composition.Knowledge-Based Systems, 140, pp. 64-81. [14] Zanbouri K., andJafari Navimipour N., 2020. A cloud service composition method using a trust‐based clustering algorithm and honeybee mating optimization algorithm.International Journal of Communication Systems, 33(5), e4259. [15] Lee L.S., andBrink W.D., 2020. Trust in cloud-based services: A framework for consumer adoption of software as a service. Journal of Information Systems,34(2), pp. 65-85. [16] Dhillon P., andSingh M., 2022. An ontology oriented service framework for social IoT.Computers & Security, 122, 102895. [17] Kumar S., andGoyal S.K., 2022. Swarm intelligence based data selection mechanism for reputation generation in social cloud. In2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), 1, pp. 583-588. [18] Bangui H., Buhnova B., andGe M., 2023. Social internet of things: ethical AI principles in trust management.Procedia Computer Science, 220, pp. 553-560. [19] Ouechtati H., Nadia B.A., andLamjed B.S., 2023. A fuzzy logic-based model for filtering dishonest recommendations in the social internet of things. Journal of Ambient Intelligence and Humanized Computing,14(5), pp. 6181-6200. |