[1] Pinto A.R., Montez C., Araújo G., Vasques F., andPortugal P., 2014. An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms.Information Fusion, 15, pp. 90-101. [2] Krishnan R., Kannan G., andMathibala G., 2018. Mobile application for emergency navigation during disaster using wireless sensor network.Advances in Wireless Communications and Networks, 4(1), 1. [3] Adeel A., Gogate M., Farooq S., Ieracitano C., Dashtipour K., Larijani H., andHussain A., 2019. A survey on the role of wireless sensor networks and IoT in disaster management.Geological Disaster Monitoring Based on Sensor Networks, pp. 57-66. [4] Yu J.Y., Lee E., Oh S.R., Seo Y.D., andKim Y.G., 2020. A survey on security requirements for WSNs: focusing on the characteristics related to security.IEEE Access, 8, pp. 45304-45324. [5] Babu M.V., Alzubi J.A., Sekaran R., Patan R., Ramachandran M., andGupta D., 2021. An improved IDAF-FIT clustering based ASLPP-RR routing with secure data aggregation in wireless sensor network.Mobile Networks and Applications, 26, pp. 1059-1067. [6] Jin Y., Kwak K.S., andYoo S.J., 2020. A novel energy supply strategy for stable sensor data delivery in wireless sensor networks. IEEE Systems Journal,14(3), pp. 3418-3429. [7] Belfkih A., Duvallet C., andSadeg B., 2019. A survey on wireless sensor network databases. Wireless Networks,25(8), pp. 4921-4946. [8] Akcan H., andBrönnimann H., 2007. A new deterministic data aggregation method for wireless sensor networks. Signal Processing,87(12), pp. 2965-2977. [9] Ghate V.V., andVijayakumar V., 2018. Machine learning for data aggregation in WSN: A survey. International Journal of Pure and Applied Mathematics,118(24), pp. 1-12. [10] Asgarnezhad R., andMonadjemi S.A., 2022. An effective combined method for data aggregation in WSNs. Iran Journal of Computer Science,5(3), pp. 167-185. [11] Yousefpoor E., Barati H., andBarati A., 2021. A hierarchical secure data aggregation method using the dragonfly algorithm in wireless sensor networks. Peer-to-Peer Networking and Applications,14(4), pp. 1917-1942. [12] Jain K., andSingh A., 2022. A two‐vector data‐prediction model for energy‐efficient data‐aggregation in wireless sensor network.Concurrency and Computation: Practice and Experience, 34(11), e6898. [13] Devi V.S., Ravi T., andPriya S.B., 2020. Cluster based data aggregation scheme for latency and packet loss reduction in WSN.Computer Communications, 149, pp. 36-43. [14] Yuea J., Zhang W., Xiao W., Tang D., andTang J., 2012. Energy efficient and balanced cluster-based data aggregation algorithm for wireless sensor networks.Procedia Engineering, 29, pp. 2009-2015. [15] Jain K., andKumar A., 2022. An innovative framework for balanced cluster‐based data aggregation in sensor networks.International Journal of Communication Systems, 35(13), e5238. [16] Jain K., Mehra P.S., Dwivedi A.K., andAgarwal A., 2022. SCADA: scalable cluster-based data aggregation technique for improving network lifetime of wireless sensor networks. the Journal of Supercomputing,78(11), pp. 13624-13652. [17] Akkaya K., Demirbas M., andAygun R.S., 2008. The impact of data aggregation on the performance of wireless sensor networks. Wireless Communications and Mobile Computing,8(2), pp. 171-193. [18] Sanjay Gandhi G., Vikas K., Ratnam V., andSuresh Babu K., 2020. Grid clustering and fuzzy reinforcement‐learning based energy‐efficient data aggregation scheme for distributed WSN. IET Communications,14(16), pp. 2840-2848. [19] Begum B.A., andNandury S.V., 2023. Data aggregation protocols for WSN and IoT applications-A comprehensive survey. Journal of King Saud University-Computer and Information Sciences,35(2), pp. 651-681. [20] Zhang P., Wang S., Guo K., andWang J., 2018. A secure data collection scheme based on compressive sensing in wireless sensor networks.Ad Hoc Networks, 70, pp. 73-84. [21] Jatothu R., Jacob S.S., Hamid S.S., Saini A.K., Singh D., andKapila D., 2022. Data aggregation of wireless sensor network using BEE swarm optimisation technique. In2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), pp. 1-5. [22] Sreedevi P., andVenkateswarlu S., 2022. An efficient intra‐cluster data aggregation and finding the best sink location in WSN using EEC‐MA‐PSOGA approach.International Journal of Communication Systems, 35(8), e5110. [23] John N.M., Joseph N., Manuel N., Emmanuel S., andKurian S.M., 2022. Energy efficient data aggregation and improved prediction in cooperative surveillance system through machine learning and particle swarm based optimization.EAI Endorsed Transaction Energy Web, 9(37), e4. [24] Nguyen N.T., Liu B.H., Pham V.T., andLuo Y.S., 2016. On maximizing the lifetime for data aggregation in wireless sensor networks using virtual data aggregation trees.Computer Networks, 105, pp. 99-110. [25] Prathima E.G., Prakash T.S., Venugopal K.R., Iyengar S.S., andPatnaik L.M., 2016. SDAMQ: secure data aggregation for multiple queries in wireless sensor networks.Procedia Computer Science, 89, pp. 283-292. [26] Sasirekha S., andSwamynathan S., 2017. Cluster-chain mobile agent routing algorithm for efficient data aggregation in wireless sensor network. Journal of Communications and Networks,19(4), pp. 392-401. [27] Wang T., Qin X., Ding Y., Liu L., andLuo Y., 2018. Privacy-preserving and energy-efficient continuous data aggregation algorithm in wireless sensor networks.Wireless Personal Communications, 98, pp. 665-684. [28] Mosavvar I., andGhaffari A., 2019. Data aggregation in wireless sensor networks using firefly algorithm.Wireless Personal Communications, 104, pp. 307-324. [29] Hu S., Liu L., Fang L., Zhou F., andYe R., 2019. A novel energy-efficient and privacy-preserving data aggregation for WSNs.IEEE Access, 8, pp. 802-813. [30] Idrees A.K., Al-Qurabat A.K.M., Abou Jaoude C., andAl-Yaseen W.L., 2019. Integrated divide and conquer with enhanced k-means technique for energy-saving data aggregation in wireless sensor networks. In2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 973-978. [31] Pham V.T., Nguyen T.N., Liu B.H., Thai M.T., Dumba B., andLin T., 2022. Minimizing latency for data aggregation in wireless sensor networks: an algorithm approach. ACM Transactions on Sensor Networks (TOSN),18(3), pp. 1-21. [32] Abbas D.T., Hammood D.A., andAzemi S.N., 2023. Minimizing energy consumption based on clustering & data aggregation technique in WSN (MECCLADA). Journal of Techniques,5(2), pp. 10-19. [33] Lavanya G., Velammal B.L., andKulothungan K., 2023. SCDAP-secured cluster based data aggregation protocol for energy efficient communication in wireless sensor networks. Journal of Intelligent & Fuzzy Systems,44(3), pp. 4747-4757. [34] Wang G., andCho G., 2013. Reputation-based cluster head elections in wireless sensor networks. Simulation,89(7), pp. 829-845. [35] Panchal A., andSingh R.K., 2021. Eadcr: energy aware distance based cluster head selection and routing protocol for wireless sensor networks.Journal of Circuits, Systems and Computers, 30(04), 2150063. [36] Azad P., andSharma V., 2013. Maximum residual energy based clustering scheme for wireless sensor networks. Adv Sci Focus,1(2), pp. 111-119. [37] Singh S., Singh S., Kaur B., andSingh A., 2025. Contention avoidance scheme using machine learning inspired deflection routing approach in optical burst switched network.International Journal of Communication Systems, 38(1), e5352. |