
Int J Performability Eng ›› 2025, Vol. 21 ›› Issue (10): 549-558.doi: 10.23940/ijpe.25.10.p2.549558
Previous Articles Next Articles
Swati Vishnoi* and Meenakshi Pareek
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: pgphb23092_swati@banasthali.in
Swati Vishnoi and Meenakshi Pareek. Edge-Aware Possibilistic Clustering with Uncertainty-Weighted Ensemble Learning for Land Cover Mapping [J]. Int J Performability Eng, 2025, 21(10): 549-558.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] Zhu Z., Qiu S., andYe S., 2022. Remote sensing of land change: A multifaceted perspective. [2] Tiwari P.,2008. Land use changes in Himalaya and their impacts on environment, society and economy: A study of the lake region in Kumaon Himalaya, India. [3] Haidarh M., Mu C., Liu Y., andHe X., 2025. Exploring traditional, deep learning and hybrid methods for hyperspectral image classification: A review. [4] Wang C., Xiao W., andLiu J., 2023. Developing an improved extreme gradient boosting model for predicting the international roughness index of rigid pavement. [5] Alshari E.A., andGawali B.W., 2021. Development of classification system for LULC using remote sensing and GIS. [6] Krishnapuram R., andKeller J.M., 2002. A possibilistic approach to clustering. [7] Kang S.Y., McGree J., andMengersen K., 2014. The choice of spatial scales and spatial smoothness priors for various spatial patterns. [8] Tomasi C., andManduchi R., 1998. Bilateral filtering for gray and color images. InSixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839-846. [9] Khan A.A., Chaudhari O., andChandra R., 2024. A review of ensemble learning and data augmentation models for class imbalanced problems: combination, implementation and evaluation. [10] Sharma R., andRavinder M., 2023. Remote sensing image segmentation using feature based fusion on FCM clustering algorithm. [11] Zhang D., Zhao J., Chen J., Zhou Y., Shi B., andYao R., 2022. Edge-aware and spectral-spatial information aggregation network for multispectral image semantic segmentation. [12] Nair P., Srivastava D.K., andBhatnagar R., 2025. Multi-modal deep embedded clustering (MM-DEC): A novel framework for mineral detection using hyperspectral imagery. [13] Morales-Alvarez P., Pérez-Suay A., Molina R., andCamps-Valls G., 2017. Remote sensing image classification with large-scale gaussian processes. [14] Paris S.,2007. A gentle introduction to bilateral filtering and its applications. In [15] Li Q., Mou L., Shi Y., andZhu X.X., 2025. BANet: A bilateral attention network for extracting changed buildings between remote sensing imagery and cadastral maps. [16] Awujoola Olalekan J., Ogwueleka F., andOdion P., 2020. Effective and accurate bootstrap aggregating (bagging) ensemble algorithm model for prediction and classification of hypothyroid disease. [17] Azmi S.S., andBaliga S., 2020. An overview of boosting decision tree algorithms utilizing AdaBoost and XGBoost boosting strategies. [18] Hakkal S., andAit Lahcen A., 2024. XGBoost to enhance learner performance prediction. [19] Lin L., Li S., Wang K., Guo B., Yang H., Zhong W., Liao P., andWang P., 2024. A new FCM-XGBoost system for predicting pavement condition index. [20] Hassan M., Chaudhry A., Khan A., andKim J.Y., 2012. Carotid artery image segmentation using modified spatial fuzzy c-means and ensemble clustering. [21] Adegun A.A., Viriri S., andTapamo J.R., 2023. Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis. [22] Özdemir Ö., andKaya A., 2019. Comparison of FCM, PCM, FPCM and PFCM algorithms in clustering methods. [23] Guo W., Lu P., Peng X., andZhao Z., 2025. Learnable adaptive bilateral filter for improved generalization in single image super-resolution. [24] Thanh D.K., Ngoc D.L., Dieu H.D., andTran V.A., 2025. Comparison of random forest and extreme gradient boosting algorithms in land cover classification in van yen district, yen bai province, Vietnam. [25] Abulfaraj A.W., andBinzagr F., 2025. A deep ensemble learning approach based on a vision transformer and neural network for multi-label image classification. [26] Ghezloo F., Seyfioglu M.S., Soraki R., Ikezogwo W.O., Li B., Vivekanandan T., Elmore J.G., Krishna R., andShapiro L., 2025. Pathfinder: A multi-modal multi-agent system for medical diagnostic decision-making applied to histopathology. [27] Yan L., Roy D.P., Zhang H., Li J., andHuang H., 2016. An automated approach for sub-pixel registration of landsat-8 operational land imager (OLI) and sentinel-2 multi spectral instrument (MSI) imagery. [28] Singh N., Singh V., andPandey A., 2025. City profile: nainital. [29] USGS, EarthExplorer, https://earthexplorer.usgs.gov/, accessed on October 1, 2025. [30] Moradi Dashtpagerdi M., Nohegar A., Vagharfard H., Honarbakhsh A., Mahmoodinejad V., Noroozi A., andGhonchehpoor D., 2013. Application of spatial analysis techniques to select the most suitable areas for flood spreading. [31] Pelikan M.,2005. Bayesian optimization algorithm. InHierarchical Bayesian Optimization Algorithm: Toward A New Generation of Evolutionary Algorithms, pp. 31-48. [32] Keykha A., Imanipour M., Shahrokhi J., andAmiri M., 2025. The advantages and challenges of electronic exams: A qualitative research based on shannon entropy technique. [33] Chen T., andGuestrin C., 2016. XGboost: A scalable tree boosting system. InProceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785-794. |
| [1] | Yonghua Li, Shujian Liu, Xiaoning Bai, and Yufeng Wang. An Interval-Probability Hybrid Structural Reliability Calculation Method Based on CSSA-BR-BP [J]. Int J Performability Eng, 2023, 19(10): 687-699. |
| [2] | Mohammed Bougofa, Abderraouf Bouafia, and Ahmed Bellaouar. Availability Assessment of Complex Systems under Parameter Uncertainty using Dynamic Evidential Networks [J]. Int J Performability Eng, 2020, 16(4): 510-519. |
| [3] | Eirik Bjorheim Abrahamsen, Jon Tømmerås Selvik, and Håkon Bjorheim Abrahamsen. Using Cost-Effectiveness Acceptability Curves as a Basis for Prioritizing Investments in Safety Measures in the Offshore Oil and Gas Industry [J]. Int J Performability Eng, 2020, 16(2): 163-170. |
| [4] | Eirik Bjorheim Abrahamsenab, Jon Tømmerås Selvik, Hans Petter Lohne, and Øystein Arild. Plug and Abandonment Decision-Making: Quality at the Right Price [J]. Int J Performability Eng, 2020, 16(1): 1-9. |
| [5] | Haiyue Yu and Xiaoyue Wu. Simulation Method for Mission Reliability Assessment of Space Telemetry Tracking and Command System with Dynamic Redundancy [J]. Int J Performability Eng, 2019, 15(6): 1684-1691. |
| [6] | Jinzhang Jia, Zhuang Li, Peng Jia, and Zhiguo Yang. Reliability Analysis of Multi-State Systems based on EUGF Method using Common Cause Failure Components [J]. Int J Performability Eng, 2019, 15(12): 3129-3138. |
| [7] | Lan Wu and Xiaolei Han. Novel Steganalysis Method for Unknown Embedding Rates using Transfer and Multi-Task Learning [J]. Int J Performability Eng, 2019, 15(12): 3139-3150. |
| [8] | Mourad Chebila. Non-Intrusive Polynomial Chaos for a Realistic Estimation of Accident Frequency [J]. Int J Performability Eng, 2019, 15(11): 2852-2859. |
| [9] | Yubin Qu, Xiang Chen, Ruijie Chen, Xiaolin Ju, and Jiangfeng Guo. Active Learning using Uncertainty Sampling and Query-by-Committee for Software Defect Prediction [J]. Int J Performability Eng, 2019, 15(10): 2701-2708. |
|