[1] Joosten J., Bilgram V., Hahn A., andTotzek D., 2024. Comparing the ideation quality of humans with generative artificial intelligence. IEEE Engineering Management Review,52(2), pp. 153-164. [2] Ma Y., Liu J., Yi F., Cheng Q., Huang Y., Lu W., andLiu X., 2023. AI vs. Human--differentiation analysis of scientific content generation.Arxiv Preprint Arxiv:2301.10416. [3] Fang C., Miao N., Srivastav S., Liu J., Zhang R., Fang R., Tsang R., Nazari N., Wang H., andHomayoun H., 2024. Large language models for code analysis: do {LLMs} really do their job?. In33rd USENIX Security Symposium (USENIX Security 24), pp. 829-846. [4] Lin F., andKim D.J., 2024. Soen-101: code generation by emulating software process models using large language model agents.Arxiv Preprint Arxiv:2403.15852. [5] Ramírez-Rueda R., Benítez-Guerrero E., Mezura-Godoy C., andBárcenas E., 2024. Transforming software development: A study on the integration of multi-agent systems and large language models for automatic code generation. In2024 12th International Conference in Software Engineering Research and Innovation (CONISOFT), pp. 11-20. [6] Chen L., Guo Q., Jia H., Zeng Z., Wang X., Xu Y., Wu J., Wang Y., Gao Q., Wang J., andYe W., 2024. A survey on evaluating large language models in code generation tasks.Arxiv Preprint Arxiv:2408.16498. [7] Yang A., Li Z., andLi J., 2024. Advancing GenAI assisted programming--a comparative study on prompt efficiency and code quality between GPT-4 and GLM-4.Arxiv Preprint Arxiv:2402.12782. [8] Kabir S., Udo-Imeh D.N., Kou B., andZhang T., 2023. Who answers it better? an in-depth analysis of ChatGPT and stack overflow answers to software engineering questions.CoRR. [9] Ozkaya I.,2023. Application of large language models to software engineering tasks: opportunities, risks, and implications. IEEE Software,40(3), pp. 4-8. [10] Zheng Z., Ning K., Zhong Q., Chen J., Chen W., Guo L., Wang W., andWang Y., 2025. Towards an understanding of large language models in software engineering tasks.Empirical Software Engineering, 30(2), 50. [11] Yu S., Fang C., Ling Y., Wu C., andChen Z., 2023. LLM for test script generation and migration: challenges, capabilities, and opportunities. In2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS), pp. 206-217. |