[1] Schäfer M., Nadi S., Eghbali A., andTip F., 2023. An empirical evaluation of using large language models for automated unit test generation. IEEE Transactions on Software Engineering,50(1), pp. 85-105. [2] Feldt R., Kang S., Yoon J., andYoo S., 2023. Towards autonomous testing agents via conversational large language models. In2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 1688-1693. [3] Wu Y., Li Z., Zhang J.M., andLiu Y., 2023. Condefects: A new dataset to address the data leakage concern for llm-based fault localization and program repair.Arxiv Preprint Arxiv:2310.16253. [4] Kang S., An G., andYoo S., 2024. A quantitative and qualitative evaluation of LLM-based explainable fault localization. Proceedings of the ACM on Software Engineering,1(FSE), pp. 1424-1446. [5] Ahmed T., andDevanbu P., 2023. Better patching using llm prompting, via self-consistency. In2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 1742-1746. [6] Ribeiro F., de Macedo J.N.C., Tsushima K., Abreu R., andSaraiva J., 2023. GPT-3-powered type error debugging: investigating the use of large language models for code repair. InProceedings of the 16th ACM SIGPLAN International Conference on Software Language Engineering, pp. 111-124. [7] Lee C., Xia C.S., Yang L., Huang J.T., Zhu Z., Zhang L., andLyu M.R., 2024. A unified debugging approach via llm-based multi-agent synergy.Arxiv Preprint Arxiv:2404.17153. [8] Yu S., Fang C., Ling Y., Wu C., andChen Z., 2023. Llm for test script generation and migration: challenges, capabilities, and opportunities. In2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS), pp. 206-217. [9] Liu Z., Chen C., Wang J., Chen M., Wu B., Che X., Wang D., andWang Q., 2024. Make llm a testing expert: bringing human-like interaction to mobile gui testing via functionality-aware decisions. InProceedings of the IEEE/ACM 46th International Conference on Software Engineering, pp. 1-13. [10] Sallou J., Durieux T., andPanichella A., 2024. Breaking the silence: the threats of using llms in software engineering. InProceedings of the 2024 ACM/IEEE 44th International Conference on Software Engineering: New Ideas and Emerging Results, pp. 102-106. [11] Wang J., Huang Y., Chen C., Liu Z., Wang S., andWang Q., 2024. Software testing with large language models: survey, landscape, and vision.IEEE Transactions on Software Engineering. |