Int J Performability Eng ›› 2024, Vol. 20 ›› Issue (3): 157-166.doi: 10.23940/ijpe.24.03.p4.157166
Previous Articles Next Articles
Jayanthi Ma,* and K. Ram Mohan Raob
Submitted on
;
Revised on
;
Accepted on
Contact:
*E-mail address: jayanthimgu343@gmail.com
Jayanthi M and K. Ram Mohan Rao. Efficient Resource Managing and Job Scheduling in a Heterogeneous Kubernetes Cluster for Big Data [J]. Int J Performability Eng, 2024, 20(3): 157-166.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Islam M.T., Wu H., Karunasekera S., andBuyya R.Sla-Based Scheduling of Spark Jobs in Hybrid Cloud Computing Environments. [2] Huang Y., Xu H., Gao H., Ma X., andHussain W.SSUR: An Approach to Optimizing Virtual Machine Allocation Strategy Based on User Requirements for Cloud Data Center. [3] Ma X., Xu H., Gao H., andBian M.Real-Time Multiple-Workflow Scheduling in Cloud Environments. [4] Zhang S., Wang C., andZomaya A.Y.Robustness Analysis and Enhancement of Deep Reinforcement Learning-Based Schedulers. [5] Li Y., Li T., Shen P., Hao L., Yang J., Zhang Z., Chen J., andBao L.PAS: Performance-Aware Job Scheduling for Big Data Processing Systems. [6] Yang R., Hu C., Sun X., Garraghan P., Wo T., Wen Z., Peng H., Xu J., andLi C.Performance-Aware Speculative Resource Oversubscription for Large-Scale Clusters. [7] Zhu J., Li X., Ruiz R., Li W., Huang H., andZomaya A.Y.Scheduling Periodical Multi-Stage Jobs with Fuzziness to Elastic Cloud Resources. [8] Zhou X., Liang W., Yan K., Li W., Kevin I., Wang K., Ma J., andJin Q.Edge-Enabled Two-Stage Scheduling Based on Deep Reinforcement Learning for Internet of Everything. [9] Zhu L., Huang K., Hu Y., andTai X.A Self-Adapting Task Scheduling Algorithm for Container Cloud using Learning Automata. [10] Zhang X., Li L., Wang Y., Chen E., andShou L.Zeus: Improving Resource Efficiency via Workload Colocation for Massive Kubernetes Clusters. [11] Meyer V., Kirchoff D.F., Da Silva, M.L., and De Rose, C.A. ML-Driven Classification Scheme for Dynamic Interference-Aware Resource Scheduling in Cloud Infrastructures. [12] Khan M., Jin Y., Li M., Xiang Y., andJiang C.Hadoop Performance Modeling for Job Estimation and Resource Provisioning. [13] Ghodsi A., Zaharia M., Hindman B., Konwinski A., Shenker S., andStoica I.Dominant Resource Fairness: Fair Allocation of Multiple Resource Types. In8th USENIX symposium on networked systems design and implementation (NSDI 11), 2011. [14] Sharkh M.A., Ouda A., andShami A.A Resource Scheduling Model for Cloud Computing Data Centers. In [15] Nathani A., Chaudhary S., andSomani G.Policy Based Resource Allocation in IaaS Cloud. [16] Chen R., Chen X., andYang, C. using a Task Dependency Job-Scheduling Method to Make Energy Savings in a Cloud Computing Environment. [17] Cheng F., Huang Y., Tanpure B., Sawalani P., Cheng L., andLiu C.Cost-Aware Job Scheduling for Cloud Instances using Deep Reinforcement Learning. [18] Amer D.A., Attiya G., Zeidan I., andNasr A.A.Elite Learning Harris Hawks Optimizer for Multi-Objective Task Scheduling in Cloud Computing. [19] Khan M.S.A. and Santhosh, R. Task Scheduling in Cloud Computing using Hybrid Optimization Algorithm. [20] Fan Y.Job Scheduling in High Performance Computing.arXiv preprint arXiv:2109.09269, 2021. [21] Zheng B., Pan L., andLiu S.Market-Oriented Online Bi-Objective Service Scheduling for Pleasingly Parallel Jobs with Variable Resources in Cloud Environments. [22] Shao Y., Li C., Gu J., Zhang J., andLuo Y.Efficient Jobs Scheduling Approach for Big Data Applications. [23] Chen, K. and Huang, L.Timely-Throughput Optimal Scheduling with Prediction. [24] Hou X., Kumar T.A., Thomas J.P., andLiu H.Dynamic Deadline-Constraint Scheduler for Hadoop YARN. In [25] Wang, Y. and Shi, W.Budget-Driven Scheduling Algorithms for Batches of MapReduce Jobs in Heterogeneous Clouds. [26] Yao Y., Wang J., Sheng B., Lin J., andMi N.Haste: Hadoop Yarn Scheduling Based on Task-Dependency and Resource-Demand. In [27] Niu Z., Tang S., andHe B.An Adaptive Efficiency-Fairness Meta-Scheduler for Data-Intensive Computing. [28] Wang, Q. and Huang, X.Pft: A Performance-Fairness Scheduler on Hadoop Yarn. In [29] Zaharia M., Borthakur D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and Stoica, I. Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling. In [30] Tang S., Lee B.S., andHe B.Dynamicmr: A Dynamic Slot Allocation Optimization Framework for Mapreduce Clusters. [31] Selvarani, S. and Sadhasivam, G.S.Improved Cost-Based Algorithm for Task Scheduling in Cloud Computing. In [32] Li J., Qiu M., Niu J., Gao W., Zong Z., andQin X.Feedback Dynamic Algorithms for Preemptable Job Scheduling in Cloud Systems. In [33] Huang Z., Balasubramanian B., Wang M., Lan T., Chiang M., andTsang D.H.Rush: A Robust Scheduler to Manage Uncertain Completion-Times in Shared Clouds. In [34] Yang Y., Zhou Y., Sun Z., andCruickshank H.Heuristic Scheduling Algorithms for Allocation of Virtualized Network and Computing Resources. [35] Ghanbari, S. and Othman, M.A Priority Based Job Scheduling Algorithm in Cloud Computing. [36] Sgall J.A New Analysis of Best Fit Bin Packing. In [37] Wang L., Zhan J., Luo C., Zhu Y., Yang Q., He Y., Gao W., Jia Z., Shi Y., Zhang S., andZheng C.Bigdatabench: A Big Data Benchmark Suite from Internet Services. In [38] Islam M.T., Srirama S.N., Karunasekera S., andBuyya R.Cost-Efficient Dynamic Scheduling of Big Data Applications in Apache Spark on Cloud. [39] Jyothi S.A., Curino C., Menache I., Narayanamurthy S.M., Tumanov A., Yaniv J., Mavlyutov R., Goiri I., Krishnan S., Kulkarni J., andRao S.Morpheus: Towards Automated {SLOs} for Enterprise Clusters. In |
[1] | Rohit Kumar Verma and Sukhvir Singh. A Hybrid Framework of Resource Allocation using Firefly and Deep Learning in Big Data Scheduling [J]. Int J Performability Eng, 2024, 20(6): 333-343. |
[2] | Neha Kashyap, Sapna Sinha, and Vineet Kansal. A Hybrid Lightweight Method of ABE with SHA1 Algorithm for Securing the IoT Data on Cloud [J]. Int J Performability Eng, 2024, 20(3): 131-138. |
[3] | V. Sudha and Anna Saro Vijendran. OSD-DNN: Oil Spill Detection using Deep Neural Networks [J]. Int J Performability Eng, 2024, 20(2): 57-67. |
[4] | Vipan and Raj Kumar. Hybrid Fuzzy-Neuro and DNN-Based Framework for VM Allocation and Resource Optimization in Cloud Systems [J]. Int J Performability Eng, 2024, 20(12): 733-740. |
[5] | Ammar Zakzouk, Bassim Oumran, and Hasan Hasan. ALLI: A High-Performance Approach to Data Deduplication in Hadoop using Enhanced Hashing and Two-Level Indexing Techniques [J]. Int J Performability Eng, 2024, 20(12): 741-752. |
[6] | Sushant Jhingran, Mayank Kumar Goyal, and Nitin Rakesh. DQLC: A Novel Algorithm to Enhance Performance of Applications in Cloud Environment [J]. Int J Performability Eng, 2023, 19(12): 771-778. |
[7] | Priyanshu Verma, Ishan Sharma, Sonia Deshmukh, and Rohit Vashisht. Customer Churn Analysis using Spark and Hadoop [J]. Int J Performability Eng, 2023, 19(10): 663-675. |
[8] | Priti Kumari and Parmeet Kaur. An Adaptable Approach to Fault Tolerance in Cloud Computing [J]. Int J Performability Eng, 2023, 19(1): 43-54. |
[9] | Mansi Mahendru and Sanjay Kumar Dubey. Portable Learning Approach towards Capturing Social Intimidating Activities using Big Data and Deep Learning Technologies [J]. Int J Performability Eng, 2022, 18(9): 668-678. |
[10] | K. Lavanya, Smrithi Prakash, Yash Gedam, Altamash Aijaz, and L. Ramanathan. Real Time Digital Face Mask Detection using MobileNet-V2 and SSD with Apache Spark [J]. Int J Performability Eng, 2022, 18(8): 598-604. |
[11] | Divya Singhal, Laxmi Ahuja, and Ashish Seth. An Insight into Combating Security Attacks for Smart Grid [J]. Int J Performability Eng, 2022, 18(7): 512-520. |
[12] | Poonam Narang, Ajay Vikram Singh, and Himanshu Monga. Hybrid Metaheuristic Approach for Detection of Fake News on Social Media [J]. Int J Performability Eng, 2022, 18(6): 434-443. |
[13] | Manu Banga. An Intelligent Software System for Real Estate Systems using Machine Learning [J]. Int J Performability Eng, 2022, 18(6): 444-452. |
[14] | Sukruta Pardeshi, chetana Khairnar, and Khalid Alfatmi. Analysis of Data Handling Challenges in Edge Computing [J]. Int J Performability Eng, 2022, 18(3): 176-187. |
[15] | Sanjay Razdan, Himanshu Gupta, and Ashish Seth. A Multi-Layer Feed Forward Network Intrusion Detection System using Individual Component Optimization Methodology for Cloud Computing [J]. Int J Performability Eng, 2022, 18(11): 781-790. |
|