Int J Performability Eng ›› 2023, Vol. 19 ›› Issue (12): 824-833.doi: 10.23940/ijpe.23.12.p7.824833
Saumya Kumar, Puneet Goswami, and Shivani Batra*
Contact:
*E-mail address: Saumya Kumar, Puneet Goswami, and Shivani Batra. Enriched Diagnosis of Osteoporosis using Deep Learning Models [J]. Int J Performability Eng, 2023, 19(12): 824-833.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Sirufo M.M.,De Pietro, F., Bassino, E.M., Ginaldi, L., and De Martinis, M. Osteoporosis in Skin Diseases. [2] Hussein, R.S. and Wahdan, M.M.Knowledge About Symptoms and Risk Factors of Osteoporosis Among Adult Women in Cairo, [3] Ou Yang, W.Y., Lai, C.C., Tsou, M.T., and Hwang, L.C. Development of Machine Learning Models for Prediction of Osteoporosis from Clinical Health Examination Data. [4] Aspray, T.J. and Hill, T.R.Osteoporosis and the Ageing Skeleton. [5] Ross R., Chaput J.P., Giangregorio L.M., Janssen I., Saunders T.J., Kho M.E., Poitras V.J., Tomasone J.R., El-Kotob, R., McLaughlin, E.C., and Duggan, M. Canadian 24-Hour Movement Guidelines for Adults Aged 18-64 Years and Adults Aged 65 Years or Older: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. [6] Asadipooya K., Abdalbary M., Ahmad Y., Kakani E., Monier-Faugere, M.C. and El-Husseini, A. Bone Quality in CKD Patients: Current Concepts and Future Directions-Part I. [7] Forgetta V.,Keller-Baruch, J., Forest, M., Durand, A., Bhatnagar, S., Kemp, J.P., Nethander, M., Evans, D., Morris, J.A., Kiel, D.P. and Rivadeneira, F. Development of a Polygenic Risk Score to Improve Screening for Fracture Risk: A Genetic Risk Prediction Study. [8] Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., and Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. [9] Padilla P., López M., Górriz J.M., Ramirez J., Salas-Gonzalez, D., and Alvarez, I. NMF-SVM Based CAD Tool Applied to Functional Brain Images for the Diagnosis of Alzheimer's Disease. [10] Li Q.Recent Progress in Computer-Aided Diagnosis of Lung Nodules on Thin-Section CT. [11] Batra S., Sharma H., Boulila W., Arya V., Srivastava P., Khan M.Z., andKrichen M.An Intelligent Sensor Based Decision Support System for Diagnosing Pulmonary Ailment through Standardized Chest X-Ray Scans. [12] Birdwell R.L., Bandodkar P., andIkeda D.M.Computer-Aided Detection with Screening Mammography in a University Hospital Setting. [13] Doi K.Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential. [14] Sachdeva S., Batra D., andBatra S.Storage Efficient Implementation of Standardized Electronic Health Records Data. In [15] Hinton G., Deng L., Yu D., Dahl G.E., Mohamed A.R., Jaitly N., Senior A., Vanhoucke V., Nguyen P., Sainath T.N., andKingsbury B.Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. [16] Chen L., Wang S., Fan W., Sun J., andNaoi S.Beyond Human Recognition: A CNN-Based Framework for Handwritten Character Recognition. In [17] Teichmann M., Weber M., Zoellner M., Cipolla R., andUrtasun R.Multinet: Real-Time Joint Semantic Reasoning for Autonomous Driving. In [18] Pereira S., Pinto A., Alves V., andSilva C.A.Brain Tumor Segmentation using Convolutional Neural Networks in MRI Images. [19] Batra, S. and Sachdeva, S.Organizing Standardized Electronic Healthcare Records Data for Mining. [20] Batra S., Khurana R., Khan M.Z., Boulila W., Koubaa A., andSrivastava P.A Pragmatic Ensemble Strategy for Missing Values Imputation in Health Records. [21] Liu W., Wang Z., Liu X., Zeng N., Liu Y., andAlsaadi F.E.A Survey of Deep Neural Network Architectures and Their Applications. [22] Esteva A., Kuprel B., Novoa R.A., Ko J., Swetter S.M., Blau H.M., andThrun S.Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. [23] Abubakar U.B., Boukar M.M., andAdeshina S.Evaluation of Parameter Fine-Tuning with Transfer Learning for Osteoporosis Classification in Knee Radiograph. [24] Pathak A., Batra S., andSharma V.An Assessment of the Missing Data Imputation Techniques for Covid-19 Data. In [25] Lee K.S., Jung S.K., Ryu J.J., Shin S.W., andChoi J.Evaluation of Transfer Learning with Deep Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs. [26] Wani, I.M. and Arora, S.Computer-Aided Diagnosis Systems for Osteoporosis Detection: A Comprehensive Survey. [27] Court-Brown, C.M. and Caesar, B. Epidemiology of Adult Fractures: A Review. [28] Stange, R. and Raschke, M.J.Osteoporotic Distal Femoral Fractures: When to Replace and How. [29] Wang S.P., Wu P.K., Lee C.H., Shih C.M., Chiu Y.C., andHsu C.E.Association of Osteoporosis and Varus Inclination of the Tibial Plateau in Postmenopausal Women with Advanced Osteoarthritis of the Knee. [30] Nijaguna G.S., Babu J.A., Parameshachari B.D., de Prado, R.P., and Frnda, J. Quantum Fruit Fly Algorithm and ResNet50-VGG16 for Medical Diagnosis. [31] Bansal M., Kumar M., Sachdeva M., andMittal A.Transfer Learning for Image Classification using VGG19: Caltech-101 Image Data Set. [32] Kumar S., Gupta S.K., Kaur M., andGupta U.VI-NET: A Hybrid Deep Convolutional Neural Network using VGG and Inception V3 Model for Copy-Move Forgery Classification. [33] Chollet F.Xception: Deep Learning with Depthwise Separable Convolutions. In [34] Huang G., Liu Z., Van Der Maaten, L., and Weinberger, K.Q. Densely Connected Convolutional Networks. In [35] He K., Zhang X., Ren S., andSun J.Deep Residual Learning for Image Recognition. In [36] Tang C., Zhang W., Li H., Li L., Li Z., Cai A., Wang L., Shi D., andYan B.CNN-Based Qualitative Detection of Bone Mineral Density via Diagnostic CT Slices for Osteoporosis Screening. [37] Liu J., Wang J., Ruan W., Lin C., andChen D.Diagnostic and Gradation Model of Osteoporosis Based on Improved Deep U-Net Network. [38] Fang Y., Li W., Chen X., Chen K., Kang H., Yu P., Zhang R., Liao J., Hong G., andLi S.Opportunistic Osteoporosis Screening in Multi-Detector CT Images using Deep Convolutional Neural Networks. [39] Su R., Liu T., Sun C., Jin Q., Jennane R., andWei L.Fusing Convolutional Neural Network Features with Hand-Crafted Features for Osteoporosis Diagnoses. [40] Nazia Fathima, S.M., Tamilselvi, R., Parisa Beham, M., and Sabarinathan, D. Diagnosis of Osteoporosis using Modified U-Net Architecture with Attention Unit in DEXA and X-Ray Images. [41] Wang P., She W., Mao Z., Zhou X., Li Y., Niu J., Jiang M., andHuang G.Use of Routine Computed Tomography Scans for Detecting Osteoporosis in Thoracolumbar Vertebral Bodies. [42] Pan, S.J. and Yang, Q.A Survey on Transfer Learning. [43] Cheplygina V., de Bruijne, M., and Pluim, J.P. Not-So-Supervised: A Survey of Semi-Supervised, Multi-Instance, and Transfer Learning in Medical Image Analysis. [44] Osteoporosis Knee X-ray Dataset, https://www.kaggle.com/datasets/stevepython/osteoporosis-knee-xray-dataset, accessed on December 1, 2023. |
[1] | Pancham Singh, Updesh Kumar Jaiswal, Eshank Jain, Nikhil Kumar, and Vimlesh Mishra. A Novel Methodology Utilizing Modern CCTV Cameras and Software as a Service Model for Crime Detection and Prediction [J]. Int J Performability Eng, 2025, 21(2): 112-121. |
[2] | Seema Kalonia and Amrita Upadhyay. Comparative Analysis of Machine Learning Model and PSO Optimized CNN-RNN for Software Fault Prediction [J]. Int J Performability Eng, 2025, 21(1): 48-55. |
[3] | Manpreet Singh, Gauri Jindal, Akshita Oberoi, and Rohan Dhangar. Improving Crime Detection Through Geo-MDA: A Hybrid Linear Regression Approach in Data Mining [J]. Int J Performability Eng, 2024, 20(8): 469-477. |
[4] | Mukta Jagdish and Valliappan Raju. Multimodal Sign Language Recognition System: Integrating Image Processing and Deep Learning for Enhanced Communication Accessibility [J]. Int J Performability Eng, 2024, 20(5): 271-281. |
[5] | Rohit Chandra Joshi, Aayush Juyal, Abhijeet Mishra, Avni Verma, and Kanika Singla. Deep Learning-Based Face Emotion Recognition: A Comparative Study [J]. Int J Performability Eng, 2024, 20(1): 1-9. |
[6] | C. Rohith Bhat and Madhusundar Nelson. Artificial Intelligence Based Credit Card Fraud Detection for Online Transactions Optimized with Sparrow Search Algorithm [J]. Int J Performability Eng, 2023, 19(9): 624-632. |
[7] | Neha Kohli and Tapas Kumar. Envisaging Alzheimer’s Disease Stage through Fuzzy Rank-Based Ensemble of Transfer Learning Models [J]. Int J Performability Eng, 2023, 19(6): 397-406. |
[8] | Manvi Khatri and Ajay Sharma. Deep Learning Approach based on Iris, Face, and Palmprint Fusion for Multimodal Biometric Recognition System [J]. Int J Performability Eng, 2023, 19(6): 407-416. |
[9] | Pavneet Singh, Jigyasa Chopra, Amandeep Singh, Nikita Nijhawan, and Kritika. Deep Learning Innovations for Enhanced Drusen Detection in Retinal Images [J]. Int J Performability Eng, 2023, 19(12): 779-787. |
[10] | Kanika Wadhwa, Shreshtha Singh, Arun Sharma, and Swaty Wadhwa. Machine Learning-Based Breast Cancer Prediction Model [J]. Int J Performability Eng, 2023, 19(1): 55-63. |
[11] | Sonika Jindal, Monika Sachdeva, and Alok Kumar Singh Kushwaha. Human Activity Recognition using Ensemble Convolutional Neural Networks and Long Short-Term Memory [J]. Int J Performability Eng, 2022, 18(9): 660-667. |
[12] | Roop Preet Kaur, Anshu Sharma, Inderpal Singh, and Rahul Malhotra. Deep Learning-Based Pneumonia Recognition from Chest X-Ray Images [J]. Int J Performability Eng, 2022, 18(5): 380-386. |
[13] | Revati M. Wahul, Archana P. Kale, and Abhishek D. Patange. Health Monitoring of Turning Tool through Vibration Signals Processed using Convolutional Neural Network Architecture [J]. Int J Performability Eng, 2022, 18(10): 730-740. |
[14] | Angel Arul Jothi J and Razia Sulthana A. A Review on the Literature of Fashion Recommender System using Deep Learning [J]. Int J Performability Eng, 2021, 17(8): 695-702. |
[15] | Chhabra Megha, Shukla Manoj Kumar, and Ravulakolluc Kiran Kumar. Intelligent Optimization of Latent Fingerprint Image Segmentation using Stacked Convolutional Autoencoder [J]. Int J Performability Eng, 2021, 17(4): 379-393. |
|