Int J Performability Eng ›› 2023, Vol. 19 ›› Issue (7): 452-461.doi: 10.23940/ijpe.23.07.p4.452461
Previous Articles Next Articles
Srishti Bhugra and Puneet Goswami*
Contact:
* E-mail address: srishti.bhugra@gmail.com
Srishti Bhugra and Puneet Goswami. Exploratory Review of Machine Learning-Based Software Component Reusability Prediction [J]. Int J Performability Eng, 2023, 19(7): 452-461.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Mili H., Mili F. and Mili A., 1995. Reusing software: Issues and research directions. 2. McIlroy M.D., Buxton J., Naur P. and Randell B., 1968, October. Mass-produced software components. InProceedings of the 1st international conference on software engineering, Garmisch Pattenkirchen, Germany(pp. 88-98). 3. Singh S., Singh S. and Singh G., 2010. Reusability of the Software. 4. Peters, J.F. and Pedrycz, W., 1998. 5. Jalender B., Govardhan A. and Premchand P., 2010. A PRAGMATIC APPROACH TO SOFTWARE REUSE. 6. Cybulski J.L.,1996. Introduction to software reuse. 7. Goswami P., Noorwali A., Kumar A., Khan M.Z., Srivastava P. and Batra S., 2023. Appraising Early Reliability of a Software Component Using Fuzzy Inference. 8. Batra S., Khurana R., Khan M.Z., Boulila W., Koubaa A. and Srivastava P., 2022. A Pragmatic Ensemble Strategy for Missing Values Imputation in Health Records. 9. Batra S., Sharma H., Boulila W., Arya V., Srivastava P., Khan M.Z. and Krichen M., 2022. An intelligent sensor based decision support system for diagnosing pulmonary ailment through standardized chest x-ray scans. 10. Kaur A., Cheema R.S. and Sandhu P.S., 2012, March. Identification of Reusable Procedure Based Modules using kNN Approach. InInternational Conference on Latest Computational Technologies (ICLCT'2012) March(pp. 17-18). 11. Prieto-Diaz, R. and Freeman, P., 1987. Classifying software for reusability. 12.Selby, R.W., 1989. Quantitative Studies of Software Reuse in Software Reusabilty[M]. 13. Deng-Jyi, C. and Lee, P.J., 1993. On the study of software reuse using reusable C++ components. 14. Caldiera, G. and Basili, V.R., 1991. Identifying and qualifying reusable software components. 15.Karlsson E.A., Sindre G. and Stalhane T., 1992. 16. Hislop G.W.,1993, November. Using existing software in a software reuse initiative. In 17. Boetticher G., Srinivas K. and Eichmann D.A., 1992. A neural net-based approach to software metrics. 18. Torres, W.R. and Samadzadeh, M., 1991, January. Software reuse and information theory based metrics. In 19. Mayobre G.,1991, November. Using Code Reusability Analysis to Identify Reusable Components from Software Related to an Application Domain. InProceedings of Fourth Annual Workshop on Software Reuse, Reston(pp. 18-22). 20. Ruegsegger T.B.,1988. Making reuse pay: the SIDPERS-3 RAPID Center. 21. Manhas S., Sandhu P.S., Chopra V. and Neeru N., 2010. Identification of reusable software modules in function oriented software systems using neural network based technique. 22. Sandhu, P.S. and Singh, H., 2008. A reusability evaluation model for OO-based software components. 23. Sandhu P.S., Singh J., Gupta V., Kaur M., Manhas S. and Sidhu R., 2010. A k-means based clustering approach for finding faulty modules in open source software systems. 24. Shri A., Sandhu P.S., Gupta V. and Anand S., 2010. Prediction of reusability of object oriented software systems using clustering approach. 25. Kanellopoulos Y., Dimopulos T., Tjortjis C. and Makris C., 2006. Mining source code elements for comprehending object-oriented systems and evaluating their maintainability. 26. Kumar A.,2012. Measuring Software reusability using SVM based classifier approach. 27. Saini J.K., Sharma A. and Sandhu D.P.S., 2006. Software reusability prediction using density based clustering. 28. Sachdeva S., Batra D. and Batra S., 2020, December. Storage efficient implementation of standardized electronic health records data. In 29. Batra, S. and Sachdeva, S., 2016. Organizing standardized electronic healthcare records data for mining. 30. Zhang X., Xiao H., Gao R., Zhang H. and Wang Y., 2022. K-nearest neighbors rule combining prototype selection and local feature weighting for classification. 31. Pathak A., Batra S. and Sharma V., 2022, September. An assessment of the missing data imputation techniques for covid-19 data. In 32. Costache R., Arabameri A., Moayedi H., Pham Q.B., Santosh M., Nguyen H., Pandey M. and Pham B.T., 2022. Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naïve Bayes, XGBoost and classification and regression tree. 33. J. Quinlan, “Induction of decision trees,” 34. Karatsiolis, S. and Schizas, C.N., 2012, November. Region based Support Vector Machine algorithm for medical diagnosis on Pima Indian Diabetes dataset. In 35. Han Y., Xu K. and Qin J., 2023. Based on the CART Decision Tree Model of Prediction and Classification of Ancient Glass-Related Properties. 36. Hu, J. and Szymczak, S., 2023. A review on longitudinal data analysis with random forest. 37. Vapnik V.N.,1999. An overview of statistical learning theory. 38. Yekkehkhany B., Safari A., Homayouni S. and Hasanlou M., 2014. A comparison study of different kernel functions for SVM-based classification of multi-temporal polarimetry SAR data. 39. Box, G.E. and Tiao, G.C., 2011. 40. Kanungo T., Mount D.M., Netanyahu N.S., Piatko C.D., Silverman R. and Wu A.Y., 2002. An efficient k-means clustering algorithm: Analysis and implementation. 41. Glennie R., Adam T., Leos‐Barajas V., Michelot T., Photopoulou T. and McClintock B.T., 2023. Hidden Markov models: Pitfalls and opportunities in ecology. 42. Mumali F.,2022. Artificial neural network-based decision support systems in manufacturing processes: A systematic literature review. 43. “ISO/IEC 25010:2011,” [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en. [Accessed 2023 January 12]. 44. Papamichail M.D., Diamantopoulos T. and Symeonidis A.L., 2019. Measuring the reusability of software components using static analysis metrics and reuse rate information. 45. Fazal-e-Amin, A.K.M. and Oxley, A., 2011. Reusability assessment of open source components for software product lines. |
[1] | Ashu Mehta, Navdeep Kaur, and Amandeep Kaur. A Review of Software Fault Prediction Techniques in Class Imbalance Scenarios [J]. Int J Performability Eng, 2025, 21(3): 123-130. |
[2] | Seema Kalonia and Amrita Upadhyay. Data Driven Software Quality Assessment: Correlation Analysis of Code Metrics and Fault-Proneness [J]. Int J Performability Eng, 2025, 21(3): 149-156. |
[3] | Vikas, Charu Wahi, Bharat Bhushan Sagar, and Manisha Manjul. Trust Management in WSN using ML for Detection of DDoS Attacks [J]. Int J Performability Eng, 2025, 21(3): 157-167. |
[4] | Archana Sharma and Dharmveer Singh Rajpoot. A DNN Anti-Predatory Algorithm-Based Model to Enhance the Efficiency of Software Effort Estimation [J]. Int J Performability Eng, 2025, 21(1): 10-23. |
[5] | Arpna Saxena and Sangeeta Mittal. CluSHAPify: Synergizing Clustering and SHAP Value Interpretations for Improved Reconnaissance Attack Detection in IIoT Networks [J]. Int J Performability Eng, 2025, 21(1): 36-47. |
[6] | Seema Kalonia and Amrita Upadhyay. Comparative Analysis of Machine Learning Model and PSO Optimized CNN-RNN for Software Fault Prediction [J]. Int J Performability Eng, 2025, 21(1): 48-55. |
[7] | Vikas Kumar, Charu Wahi, Bharat Bhushan Sagar, and Manisha Manjul. Ensemble Learning Based Intrusion Detection for Wireless Sensor Network Environment [J]. Int J Performability Eng, 2024, 20(9): 541-551. |
[8] | Kalyani H. Deshmukh, Gajendra R. Bamnote, and Pratik K Agrawal. A Novel Approach for Drought Monitoring and Evaluation using Time Series Analysis and Deep Learning [J]. Int J Performability Eng, 2024, 20(8): 498-509. |
[9] | Saurabh Saxena, and Chetna Gupta. Optimizing Bug Resolution: A Data-Driven Developer Recommendation System [J]. Int J Performability Eng, 2024, 20(8): 510-519. |
[10] | Lakshya Vaswani, Sai Sri Harsha, Subham Jaiswal, and Aju D. Unravelling Complexity: Investigating the Effectiveness of SHAP Algorithm for Improving Explainability in Network Intrusion System Across Machine and Deep Learning Models [J]. Int J Performability Eng, 2024, 20(7): 421-431. |
[11] | Meenakshi Chawla and Meenakshi Pareek. A Hybrid Deep Learning Perspective for Software Effort Estimation [J]. Int J Performability Eng, 2024, 20(7): 442-450. |
[12] | Ajeet Kumar Sharma and Rakesh Kumar. IoT Malware Detection and Dynamic Analysis of MQTT Simulated Network [J]. Int J Performability Eng, 2024, 20(7): 451-459. |
[13] | Abhishek Gupta and Jaspreet Singh. Data-Driven Security Framework for VANET using Firefly and ANN [J]. Int J Performability Eng, 2024, 20(6): 344-354. |
[14] | Vikas Verma, Arun Malik, and Isha Batra. Analyzing and Classifying Malware Types on Windows Platform using an Ensemble Machine Learning Approach [J]. Int J Performability Eng, 2024, 20(5): 312-318. |
[15] | Naveen Monga and Parveen Sehgal. Effective Software Defect Prediction: Evaluating Classifiers and Feature Selection with Firefly Algorithm [J]. Int J Performability Eng, 2024, 20(4): 195-204. |
|