Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (11): 938-945.doi: 10.23940/ijpe.21.11.p4.938945
Previous Articles Next Articles
Bandarupalli Rakesha and H. Parveen Sultanab
Submitted on
;
Revised on
;
Accepted on
Contact:
*E-mail address: hparveensultana@vit.ac.in
Bandarupalli Rakesh and H. Parveen Sultana. A Review on Enhanced Routing Solutions in RPL Protocol [J]. Int J Performability Eng, 2021, 17(11): 938-945.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Atzori L., Iera A., andMorabito G,The Internet of Things: A Survey. 2. Council N.Disruptive Civil Technologies: Six Technologies with Potential Impacts on Us Interests Out to 2025; Conference Report CR; SRI Consulting Business Intelligence: Menlo Park, CA, USA, 2008. 3. Yuan L., Cheng H., andWangshun C,Building Energy Consumption Data Index Method in Cloud Computing Environment. 4. Winter T., Thubert P., Brandt A., Hui J.W., Kelsey R., Levis P., Pister K., Struik R., Vasseur J.P., andAlexander R.K,RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. 5. Iova O., Theoleyre F., andNoel T.Using Multiparent Routing in RPL to increase the Stability and the Lifetime of the Network. 6. Levis P., Clausen T., Hui J., Gnawali O., andKo J,The Trickle Algorithm (RFC 6206). In 7. Mohamed, B. and Mohamed, F.QoS Routing RPL for Low Power and Lossy Networks. 8. Gara F., Saad L.B., Ayed R.B., andTourancheau B,RPL Protocol Adapted for Healthcare and Medical Applications. In 9. Vasseur J.P., Kim M., Pister K., Dejean N., andBarthel D,Routing Metrics used for Path Calculation in Low-power and Lossy networks. In 10. Goyal M., Baccelli E., Philipp M., Brandt A., andMartocci J.Reactive Discovery of Point-to-point Routes in Low Power and Lossy Networks. 11. Barriquello C.H., Denardin G.W., andCampos A.A Geographic Routing Approach for IPv6 in Large-Scale Low-power and Lossy Networks. 12. Zhao, M., Ho, I.W.H., and Chong, P.H.J. An Energy-efficient Region-based RPL Routing Protocol for Low-power and Lossy Networks. 13. Anamalamudi S., Zhang M., Sangi A.R., Perkins C.E., andAnand S., 14. Kelsey, R.,Hui, J.Multicast Protocol for Low-power and Lossy Networks (MPL). 15. Oikonomou G., Phillips I., andTryfonas T.IPv6 Multicast Forwarding in RPL-based Wireless Sensor Networks. 16. Abdel Fadeel, K.Q., and El Sayed, K, ESMRF: Enhanced Stateless Multicast RPL Forwarding for IPv6-based Low-power and Lossy Networks. In 17. Lorente G.G., Lemmens B., Carlier M., Braeken A., andSteenhaut K,BMRF: Bidirectional Multicast RPL Forwarding. 18. Gaddour O., Koubäa A., Rangarajan R., Cheikhrouhou O., Tovar E., andAbid M,Co-RPL: RPL Routing for Mobile Low Power Wireless Sensor Networks using Corona Mechanism. In 19. Gaddour O., Koubâa A., andAbid M.Quality-of-service Aware Routing for Static and Mobile IPv6-based Low-power and Lossy Sensor Networks using RPL. 20. Fotouhi H., Moreira D., andAlves, M. mRPL: Boosting Mobility in the Internet of Things. 21. Bouaziz M., Rachedi A., andBelghith A.EKF-MRPL: Advanced Mobility Support Routing Protocol for Internet of Mobile Things: Movement Prediction Approach. 22. Bouaziz M., Rachedi A., Belghith A., Berbineau M., andAl-Ahmadi, S, EMA-RPL: Energy and Mobility aware Routing for the Internet of Mobile Things. 23. Ko, J. Jeong, J. Park, J. Jun, J.A.; Gnawali, O.Paek, J,x DualMOP-RPL: Supporting Multiple Modes of Downward Routing in a Single RPL Network. ACM Trans. Sens. Netw. (TOSN), 2015. 24. Kim H.S., Cho H., Kim H., andBahk S,DT-RPL: Diverse Bidirectional Traffic Delivery through RPL Routing Protocol in Low Power and Lossy Networks. 25. Taghizadeh S., Bobarshad H., andElbiaze H,CLRPL: Context-aware and Load Balancing RPL for IoT Networks under Heavy and Highly Dynamic Load. 26. Ancillotti E., Bruno R., andConti M.Reliable Data Delivery with the IETF Routing Protocol for Low-power and Lossy Networks. 27. Mohamed, B. and Mohamed, F, QoS Routing RPL for Low Power and Lossy Networks. 28. Iova O., Theoleyre F., andNoel T.Using Multiparent Routing in RPL to increase the Stability and the Lifetime of the Network. 29. Abreu, C., Ricardo, M,Mendes, P.M, Energy-aware Routing for Biomedical Wireless Sensor Networks. 30. Capone S., Brama R., Accettura N., Striccoli D., andBoggia G,An Energy Efficient and Reliable Composite Metric for RPL Organized Networks. In 31. Gaddour O., Koubâa A., Baccour N., andAbid M,OF-FL: QoS-aware Fuzzy Logic Objective Function for the RPL Routing Protocol. In 32. Gaddour O., Koubâa A., andAbid M.Quality-of-service Aware Routing for Static and Mobile IPv6-based Low-power and Lossy Sensor Networks using RPL. 33. Kamgueu P.O., Nataf E., andDjotio T.N.On Design and Deployment of Fuzzy-based Metric for Routing in Low-power and Lossy Networks. In 34. Araujo H.D.S., Rodrigues, J.J., Rabelo, R.D.A., Sousa, N.D.C., and Sobral, J.V, A Proposal for IoT Dynamic Routes Selection based on Contextual Information. 35. Chen Y., Chanet J.P., Hou K.M., Shi H., andDe Sousa, G, A Scalable Context-aware Objective Function (SCAOF) of Routing Protocol for Agricultural Low-power and Lossy Networks (RPAL). 36. Gozuacik, N. and Oktug, S, Parent-aware Routing for Iot Networks. In 37. Airehrour D., Gutierrez J.A., andRay S.K,SecTrust-RPL: A Secure Trust-aware RPL routing Protocol for Internet of Things. 38. Mehta, R. and Parmar, M.M, Trust based Mechanism for Securing Iot Routing Protocol rpl Against Wormhole &Grayhole Attacks. In 39. Shafique U., Khan A., Rehman A., Bashir F., andAlam M,Detection of Rank Attack in Routing Protocol for Low Power and Lossy Networks. |
[1] | Akanksha Mehndiratta and Krishna Asawa. Modeling Discourse for Dialogue Systems using Spectral Learning [J]. Int J Performability Eng, 2025, 21(2): 65-73. |
[2] | Updesh Kumar Jaiswal and Amarjeet Prajapati. An Effective PSO-Driven Method for Test Data Generation in Branch Coverage Software Testing [J]. Int J Performability Eng, 2025, 21(1): 1-9. |
[3] | Arpna Saxena and Sangeeta Mittal. CluSHAPify: Synergizing Clustering and SHAP Value Interpretations for Improved Reconnaissance Attack Detection in IIoT Networks [J]. Int J Performability Eng, 2025, 21(1): 36-47. |
[4] | Manu Banga. Enhancing Software Fault Prediction using Machine Learning [J]. Int J Performability Eng, 2024, 20(9): 529-540. |
[5] | Ajeet Kumar Sharma and Rakesh Kumar. IoT Malware Detection and Dynamic Analysis of MQTT Simulated Network [J]. Int J Performability Eng, 2024, 20(7): 451-459. |
[6] | Shikha Singh, Sumit Badotra, and Nitin Arvind Shelke. Applying Machine Learning Techniques for Comparative Analysis of Various Diseases [J]. Int J Performability Eng, 2024, 20(6): 379-390. |
[7] | Mangesh Balpande, Shruti Kothawade, Gaurav Pawar, Mahek Sayyad, and Jay Patil. Next Generation Smart Stick for Blind People using Assistive Technology [J]. Int J Performability Eng, 2024, 20(5): 282-291. |
[8] | Poorana Senthilkumar S, Wilfred Blessing N. R., Subramani B, and Rajesh Kanna R. Additively Composite Model Objective Function for Routing Protocol for Low-Power and Lossy Network Protocol [J]. Int J Performability Eng, 2024, 20(5): 300-311. |
[9] | Priya Singh and Rajalakshmi Krishnamurthi. AgriGuard: IoT-Powered Real-Time Object Detection and Alert System for Intelligent Surveillance [J]. Int J Performability Eng, 2024, 20(4): 232-241. |
[10] | Neha Kashyap, Sapna Sinha, and Vineet Kansal. A Hybrid Lightweight Method of ABE with SHA1 Algorithm for Securing the IoT Data on Cloud [J]. Int J Performability Eng, 2024, 20(3): 131-138. |
[11] | Darius Muyizere, Arcade Nshimiyimana, Theophile Mugerwa, Lawrence K. Letting, and Bernard B. Munyazikwiye. Reliability Assessment of Distribution System Grid-Connected Multi-Inverter for Solar Photo-Voltaic Systems: A Case Study [J]. Int J Performability Eng, 2024, 20(3): 149-156. |
[12] | Aparna Shrivastava and P Raghu Vamsi. Improving Anomaly Classification using Combined Data Transformation and Machine Learning Methods [J]. Int J Performability Eng, 2024, 20(2): 68-80. |
[13] | Annu Malik and Rashmi Kushwah. Optimizing Energy Efficiency and Delay in IoT Networks using M/G/1 Queuing with Adaptive Vacation Policy [J]. Int J Performability Eng, 2024, 20(12): 753-763. |
[14] | Deepika Singh, Shajee Mohan, and Preeti Dubey. Identifying Cyber Threats in Metaverse Learning Environment using Explainable Deep Neural Networks [J]. Int J Performability Eng, 2024, 20(12): 764-774. |
[15] | Mehndiratta Akanksha and Asawa Krishna. Discovering Elementary Discourse Units in Textual Data using Canonical Correlation Analysis [J]. Int J Performability Eng, 2024, 20(12): 723-732. |
|