Int J Performability Eng ›› 2022, Vol. 18 ›› Issue (10): 702-709.doi: 10.23940/ijpe.22.10.p3.702-709
Previous Articles Next Articles
Jibi G. Thanikkala, Ashwani Kumar Dubeya,*, and Thomas M. T.b
Submitted on
;
Revised on
;
Accepted on
Contact:
*E-mail address: About author:
Jibi G Thanikkal is a PhD scholar at Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India. Her research interests include computer vision, digital image processing and deep learning.Jibi G. Thanikkal, Ashwani Kumar Dubey, and Thomas M. T.. Deep Learning based Aquatic and Semi Aquatic Plants Morphological Features Extraction and Classification [J]. Int J Performability Eng, 2022, 18(10): 702-709.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Mohanraj K., Karthikeyan B.S., Vivek-Ananth, R.P., Chand, R.P., Aparna, S.R., Mangalapandi, P., and Samal, A. IMPPAT: A Curated Database of Indian Medicinal Plants, Phytochemistry and Therapeutics. Scientific reports, vol. 8, no. 1, pp. 1-17, 2018. 2. Sofowora A., Ogunbodede E., andOnayade A.The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. African journal of traditional, complementary and alternative medicines, vol. 10, no. 5, pp. 210-229, 2013. 3. Chen Y., Liu L., Wang H., Ma J., Peng W., Li X., Lai Y., Zhang B., andZhang D.Environmentally Friendly Plant Essential Oil: Liquid Gold for Human Health. Advances in Agronomy, vol. 170, pp. 289-337, 2021. 4. Mukti, M. and Rahmatullah, M.Treatment with Aquatic Plants by a Bagdi Tribal Healer of Rajbari District, Bangladesh. Ancient science of life, vol. 33, no. 1, pp. 22, 2013. 5. Li G., Hu S., Hou H., andKimura S.Heterophylly: Phenotypic Plasticity of Leaf Shape in Aquatic and Amphibious Plants. Plants, vol. 8, no. 10, pp. 420, 2019. 6. Thanikkal J.G., Dubey A.K., andThomas, M.T. Whether Color, Shape and Texture of Leaves Are the Key Features for Image Processing based Plant Recognition? An Analysis!. In2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), IEEE, pp. 404-409, 2017. 7. Krähmer H.Morphological Adaptation to Water. Atlas of Weed Mapping, pp. 192-193, 2016. 8. Knight S., Hauxwell J., andHaber E.A.Distribution and Abundance of Aquatic Plants-Human Impacts, 2014. 9. Cope J.S., Corney D., Clark J.Y., Remagnino P., andWilkin P.Plant Species Identification using Digital Morphometrics: A Review. Expert Systems with Applications, vol. 39, no. 8, pp. 7562-7573, 2012. 10. Thanikkal J.G., Dubey A.K., andThomas, M.T. Advanced Plant Leaf Classification through Image Enhancement and Canny Edge Detection. In2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), IEEE, pp. 1-5, 2018. 11. Thanikkal J.G., Dubey A.K., andThomas M.T.Unique Shape Descriptor Algorithm for Medicinal Plant Identification (SDAMPI) with Abridged Image Database. IEEE Sensors Journal, vol. 20, no. 21, pp. 13103-13109, 2020. 12. Chitwood, D.H. and Sinha, N.R.Evolutionary and Environmental Forces Sculpting Leaf Development. Current Biology, vol. 26, no. 7, pp. R297-R306, 2016. 13. Ichihashi Y.,Aguilar-Martínez, J.A., Farhi, M., Chitwood, D.H., Kumar, R., Millon, L.V., Peng, J., Maloof, J.N., and Sinha, N.R. Evolutionary Developmental Transcriptomics Reveals a Gene Network Module Regulating Interspecific Diversity in Plant Leaf Shape. Proceedings of the National Academy of Sciences, vol. 111, no. 25, pp. E2616-E2621, 2014. 14. Kaplan D.R.The Science of Plant Morphology: Definition, History, and Role in Modern Biology. American Journal of Botany, vol. 88, no. 10, pp. 1711-1741, 2001. 15. Dkhar, J. and Pareek, A.What Determines a Leaf’s Shape?. EvoDevo, vol. 5, no. 1, pp. 1-19, 2014. 16. Sharma V., Sharma R., Gautam D.S., Kuca K., Nepovimova E., andMartins N.Role of Vacha (Acorus Calamus Linn.) In Neurological and Metabolic Disorders: Evidence from Ethnopharmacology, Phytochemistry, Pharmacology and Clinical Study. Journal of clinical medicine, vol. 9, no. 4, pp. 1176, 2020. 17. Poornima V., Sharanya M., andJeyam M.An Ethnomedical, Pharmacological and Phytochemical Review of Ammannia Baccifera L. World Journal of Pharmaceutical Research, vol. 3, no. 6, pp. 1771-1789, 2014. 18. Aguiar, S. and Borowski, T.Neuropharmacological Review of the Nootropic Herb Bacopa Monnieri. Rejuvenation research, vol. 16, no. 4, pp. 313-326, 2013. 19. Gohil K.J., Patel J.A., andGajjar A.K.Pharmacological Review on Centella Asiatica: A Potential Herbal Cure-All. Indian journal of pharmaceutical sciences, vol. 72, no. 5, pp. 546, 2010. 20. Sakthivel, K.M. and Guruvayoorappan, C.Biophytum Sensitivum: Ancient Medicine, Modern Targets. Journal of advanced pharmaceutical technology & research, vol. 3, no. 2, pp. 83, 2012. 21. Al-Snafi, A.E. Bioactive Components and Pharmacological Effects of Canna Indica-An Overview. International Journal of Pharmacology and toxicology, vol. 5, no. 2, pp.71-75, 2015. 22. Hegde P.K., Rao H.A., andRao P.N.A Review on Insulin Plant (Costus Igneus Nak). Pharmacognosy reviews, vol. 8, no. 15, pp. 67, 2014. 23. Timalsina, D. and Devkota, H.P.Eclipta Prostrata (L.) L.(Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules, vol. 11, no. 11, pp. 1738, 2021. 24. Yachamaneni, J. and Dhanraj, S.Anti-Hepatotoxic and Antioxidant Activity of Limnanthemum Indicum against Carbon Tetrachloride Induced Liver Toxicity in Rats. Indian journal of pharmaceutical education and research, vol. 51, no. 2, pp. 321-328, 2017. 25. L. Cao and L. Berent, Marsilea quadrifolia L.: U.S. Geological Survey, Nonindigenous Aquatic Species Database, Gainesville, FL, and NOAA Great Lakes Aquatic Nonindigenous Species Information System, Ann Arbor, MI, https://nas.er.usgs.gov/queries/GreatLakes/FactSheet.aspx?Species_ID=293, Revision Date: 8/16/2019, Access Date: 3/24/2022 26. Ming R.,VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L.T., Zhang, Q., Kim, M.J., Schatz, M.C., Campbell, M., and Li, J. Genome of the Long-Living Sacred Lotus (Nelumbo Nucifera Gaertn.). Genome biology, vol. 14, no. 5, pp. 1-11, 2013. 27. Shil, T. and Maurya, O.N.A Note on the Uses of Nymphaea Pubescens Willd.(Nymphaeaceae) In Katihar District, Bihar.vol. 25, pp. 4-5, 2021. 28. Khan M.A., Marwat K.B., Gul B., Wahid F., Khan H., andHashim S.Pistia Stratiotes L.(Araceae): Phytochemistry, Use in Medicines, Phytoremediation, Biogas and Management Options. Pakistan Journal of Botany, vol. 46, no. 3, pp. 851-860, 2014. 29. Huimin L., Ren C., Yang Q.E., andYuan Q.A New Natural Hybrid of Sphagneticola (Asteraceae, Heliantheae) From Guangdong, China. Phytotaxa, vol. 221, no. 1, pp. 71-76, 2015. 30. Walter T.M., Merish S., andTamizhamuthu M.Review of Alternanthera Sessilis with Reference to Traditional Siddha Medicine. International Journal of Pharmacognosy and Phytochemical Research, vol. 6, no. 2, pp. 249-254, 2014. 31. Zhang C., Zhang W., Shi R., Tang B., andXie S.Coix Lachryma-Jobi Extract Ameliorates Inflammation and Oxidative Stress in a Complete Freund’s Adjuvant-Induced Rheumatoid Arthritis Model. Pharmaceutical biology, vol. 57, no. 1, pp. 792-798, 2019. 32. Ghosh P., Dutta A., Biswas M., Biswas S., Hazra L., Nag S.K., Sil S., andChatterjee S. Phytomorphological,Chemical and Pharmacological Discussions about Commelina Benghalensis Linn.(Commelinaceae): A Review. The Pharma Innovation Journal, vol. 8, no. 6, pp. 12-18, 2019. 33. Dhammu, H.S. and Sandhu, K.S.Critical Period of Cyperus Iria L. Competition in Transplanted Rice. In 13 th Australian Weeds Conference: Weeds “Threats now and forever, pp. 79-82, 2002. 34. Chakraborty, T. and Paul, S.Glinus Oppositifolius (L.) Aug. DC.: A Repository of Medicinal Potentiality. International Journal of Phytomedicine, vol. 9, no. 4, pp. 543-557, 2017. 35. Dash, G.K. and Murthy, P.N.Studies on Wound Healing Activity of Heliotropium Indicum Linn. Leaves on Rats. International Scholarly Research Notices, 2011. 36. Kannur D., Nandanwadkar S., Dhawane S., Phulambrikar S., andKhandelwal K.Experimental Evaluation of Hygrophila Schulli Seed Extracts for Antistress Activity. Ancient science of life, vol. 37, no. 1, pp. 31, 2017. 37. Chung Y.M., Lan Y.H., Hwang T.L., andLeu Y.L.Anti-Inflammatory and Antioxidant Components from Hygroryza Aristata. Molecules, vol. 16, no. 3, pp. 1917-1927, 2011. 38. Smriti Rekha, C.D., Ahmed, A.B., Saha, D., and Chanda, I. Scientific Evidence of Lindernia Crustacea (L) F. Muell, an Indigenous Plant: Folklore Medicine Used Traditionally. Int Res J Pharm, vol. 10, no. 1, pp. 176-183, 2019. 39. Ali M., Shabbir A., andMujahid I., First Record of Monochoria Hastata (L.) Solms.: A New Alien Weed of Rice in Pakistan. 40. Galani V.J., Patel B.G., andRana D.G.Sphaeranthus Indicus Linn.: A Phytopharmacological Review. International Journal of Ayurveda Research, vol. 1, no, 4, pp. 247, 2010. 41. Martin R.E., Asner G.P., Bentley L.P., Shenkin A., Salinas N., Huaypar K.Q., Pillco M.M., Ccori Álvarez, F.D., Enquist, B.J., Diaz, S., and Malhi, Y. Covariance of Sun and Shade Leaf Traits along a Tropical Forest Elevation Gradient. Frontiers in plant science, vol. 10, pp. 1810, 2020. 42. Yavari N., Tripathi R., Wu B.S., MacPherson, S., Singh, J., and Lefsrud, M. The Effect of Light Quality on Plant Physiology, Photosynthetic, and Stress Response in Arabidopsis Thaliana Leaves. PloS one, vol. 16, no. 3, pp. 0247380, 2021. 43. Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., and Dehmer, M. An Introductory Review of Deep Learning for Prediction Models with Big Data. Frontiers in Artificial Intelligence, vol. 3, pp. 4, 2020. 44. LeCun, Y. Generalization and Network Design Strategies.Connectionism in perspective, vol. 19, no. 143-155, pp. 18, 1989. 45. Mall, P.K. and Singh, P.K.BoostNet: A Method to Enhance the Performance of Deep Learning Model on Musculoskeletal Radiographs X-Ray Images. International Journal of System Assurance Engineering and Management, vol. 13, no. 1, pp. 658-672, 2022. 46. Tan, M. and Le, Q.Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. In International conference on machine learning, PMLR, pp. 6105-6114, 2019. 47. Howard A.G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Andreetto M., andAdam, H. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861, 2017. 48. He K., Zhang X., Ren S., andSun J.Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016. 49. Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556, 2014. |
[1] | Mansi Mahendru and Sanjay Kumar Dubey. Portable Learning Approach towards Capturing Social Intimidating Activities using Big Data and Deep Learning Technologies [J]. Int J Performability Eng, 2022, 18(9): 668-678. |
[2] | Sandhya Alagarsamy and Visumathi James. RNN LSTM-based Deep Hybrid Learning Model for Text Classification using Machine Learning Variant XGBoost [J]. Int J Performability Eng, 2022, 18(8): 545-551. |
[3] | K. Lavanya, Smrithi Prakash, Yash Gedam, Altamash Aijaz, and L. Ramanathan. Real Time Digital Face Mask Detection using MobileNet-V2 and SSD with Apache Spark [J]. Int J Performability Eng, 2022, 18(8): 598-604. |
[4] | Rajan Prasad Tripathi, Sunil Kumar Khatri, and Darelle Van Greunen. Relative Examination of Breast Malignant Growth Analysis Utilizing Different Machine Learning Algorithms [J]. Int J Performability Eng, 2022, 18(6): 417-425. |
[5] | Poonam Narang, Ajay Vikram Singh, and Himanshu Monga. Hybrid Metaheuristic Approach for Detection of Fake News on Social Media [J]. Int J Performability Eng, 2022, 18(6): 434-443. |
[6] | Dan Lu and Shunkun Yang*. A Survey of the Analysis of Complex Systems based on Complex Network Theory and Deep Learning [J]. Int J Performability Eng, 2022, 18(4): 241-250. |
[7] | Sukruta Pardeshi, chetana Khairnar, and Khalid Alfatmi. Analysis of Data Handling Challenges in Edge Computing [J]. Int J Performability Eng, 2022, 18(3): 176-187. |
[8] | Geetanjali S. Mahamunkar, Arvind W. Kiwelekar, and Laxman D. Netak. Deep Learning Model for Black Spot Classification [J]. Int J Performability Eng, 2022, 18(3): 222-230. |
[9] | Sonali S. Patil, Sujit S. Pardeshi, Nikhil Pradhan, and Abhishek D. Patange. Cutting Tool Condition Monitoring using a Deep Learning-based Artificial Neural Network [J]. Int J Performability Eng, 2022, 18(1): 37-46. |
[10] | F. Leo John, Jose Prabhu Joseph John. Randomly Selected Heterogenic Bagging with Cognitive Entity Metrics for Prediction of Heterogeneous Defects [J]. Int J Performability Eng, 2021, 17(9): 796-803. |
[11] | Angel Arul Jothi J and Razia Sulthana A. A Review on the Literature of Fashion Recommender System using Deep Learning [J]. Int J Performability Eng, 2021, 17(8): 695-702. |
[12] | Padma Priya R, Aditya Tiwari, Ayush Pandey, and Siddharth Krishna. Identifying Video Tampering using Watermarked Blockchain [J]. Int J Performability Eng, 2021, 17(8): 722-732. |
[13] | Yi-Fan Chen, Yi-Kuei Lin, and Cheng-Fu Huang. Using Deep Neural Networks to Evaluate the System Reliability of Manufacturing Networks [J]. Int J Performability Eng, 2021, 17(7): 600-608. |
[14] | Sanjay Kumar Ahuja, Manoj Kumar Shukla, and Kiran Kumar Ravulakollu. Optimized Deep Learning Framework for Detecting Pitting Corrosion based on Image Segmentation [J]. Int J Performability Eng, 2021, 17(7): 627-637. |
[15] | J Akilandeswaria, G. Jothib, A Naveenkumara, R. S. Sabeenianc, P. Iyyanara, and M. E Paramasivamc . Detecting Pulmonary Embolism using Deep Neural Networks [J]. Int J Performability Eng, 2021, 17(3): 322-332. |
|