Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (11): 938-945.doi: 10.23940/ijpe.21.11.p4.938945
Previous Articles Next Articles
Bandarupalli Rakesha and H. Parveen Sultanab
Submitted on
;
Revised on
;
Accepted on
Contact:
*E-mail address: hparveensultana@vit.ac.in
Bandarupalli Rakesh and H. Parveen Sultana. A Review on Enhanced Routing Solutions in RPL Protocol [J]. Int J Performability Eng, 2021, 17(11): 938-945.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Atzori L., Iera A., andMorabito G,The Internet of Things: A Survey. 2. Council N.Disruptive Civil Technologies: Six Technologies with Potential Impacts on Us Interests Out to 2025; Conference Report CR; SRI Consulting Business Intelligence: Menlo Park, CA, USA, 2008. 3. Yuan L., Cheng H., andWangshun C,Building Energy Consumption Data Index Method in Cloud Computing Environment. 4. Winter T., Thubert P., Brandt A., Hui J.W., Kelsey R., Levis P., Pister K., Struik R., Vasseur J.P., andAlexander R.K,RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. 5. Iova O., Theoleyre F., andNoel T.Using Multiparent Routing in RPL to increase the Stability and the Lifetime of the Network. 6. Levis P., Clausen T., Hui J., Gnawali O., andKo J,The Trickle Algorithm (RFC 6206). In 7. Mohamed, B. and Mohamed, F.QoS Routing RPL for Low Power and Lossy Networks. 8. Gara F., Saad L.B., Ayed R.B., andTourancheau B,RPL Protocol Adapted for Healthcare and Medical Applications. In 9. Vasseur J.P., Kim M., Pister K., Dejean N., andBarthel D,Routing Metrics used for Path Calculation in Low-power and Lossy networks. In 10. Goyal M., Baccelli E., Philipp M., Brandt A., andMartocci J.Reactive Discovery of Point-to-point Routes in Low Power and Lossy Networks. 11. Barriquello C.H., Denardin G.W., andCampos A.A Geographic Routing Approach for IPv6 in Large-Scale Low-power and Lossy Networks. 12. Zhao, M., Ho, I.W.H., and Chong, P.H.J. An Energy-efficient Region-based RPL Routing Protocol for Low-power and Lossy Networks. 13. Anamalamudi S., Zhang M., Sangi A.R., Perkins C.E., andAnand S., 14. Kelsey, R.,Hui, J.Multicast Protocol for Low-power and Lossy Networks (MPL). 15. Oikonomou G., Phillips I., andTryfonas T.IPv6 Multicast Forwarding in RPL-based Wireless Sensor Networks. 16. Abdel Fadeel, K.Q., and El Sayed, K, ESMRF: Enhanced Stateless Multicast RPL Forwarding for IPv6-based Low-power and Lossy Networks. In 17. Lorente G.G., Lemmens B., Carlier M., Braeken A., andSteenhaut K,BMRF: Bidirectional Multicast RPL Forwarding. 18. Gaddour O., Koubäa A., Rangarajan R., Cheikhrouhou O., Tovar E., andAbid M,Co-RPL: RPL Routing for Mobile Low Power Wireless Sensor Networks using Corona Mechanism. In 19. Gaddour O., Koubâa A., andAbid M.Quality-of-service Aware Routing for Static and Mobile IPv6-based Low-power and Lossy Sensor Networks using RPL. 20. Fotouhi H., Moreira D., andAlves, M. mRPL: Boosting Mobility in the Internet of Things. 21. Bouaziz M., Rachedi A., andBelghith A.EKF-MRPL: Advanced Mobility Support Routing Protocol for Internet of Mobile Things: Movement Prediction Approach. 22. Bouaziz M., Rachedi A., Belghith A., Berbineau M., andAl-Ahmadi, S, EMA-RPL: Energy and Mobility aware Routing for the Internet of Mobile Things. 23. Ko, J. Jeong, J. Park, J. Jun, J.A.; Gnawali, O.Paek, J,x DualMOP-RPL: Supporting Multiple Modes of Downward Routing in a Single RPL Network. ACM Trans. Sens. Netw. (TOSN), 2015. 24. Kim H.S., Cho H., Kim H., andBahk S,DT-RPL: Diverse Bidirectional Traffic Delivery through RPL Routing Protocol in Low Power and Lossy Networks. 25. Taghizadeh S., Bobarshad H., andElbiaze H,CLRPL: Context-aware and Load Balancing RPL for IoT Networks under Heavy and Highly Dynamic Load. 26. Ancillotti E., Bruno R., andConti M.Reliable Data Delivery with the IETF Routing Protocol for Low-power and Lossy Networks. 27. Mohamed, B. and Mohamed, F, QoS Routing RPL for Low Power and Lossy Networks. 28. Iova O., Theoleyre F., andNoel T.Using Multiparent Routing in RPL to increase the Stability and the Lifetime of the Network. 29. Abreu, C., Ricardo, M,Mendes, P.M, Energy-aware Routing for Biomedical Wireless Sensor Networks. 30. Capone S., Brama R., Accettura N., Striccoli D., andBoggia G,An Energy Efficient and Reliable Composite Metric for RPL Organized Networks. In 31. Gaddour O., Koubâa A., Baccour N., andAbid M,OF-FL: QoS-aware Fuzzy Logic Objective Function for the RPL Routing Protocol. In 32. Gaddour O., Koubâa A., andAbid M.Quality-of-service Aware Routing for Static and Mobile IPv6-based Low-power and Lossy Sensor Networks using RPL. 33. Kamgueu P.O., Nataf E., andDjotio T.N.On Design and Deployment of Fuzzy-based Metric for Routing in Low-power and Lossy Networks. In 34. Araujo H.D.S., Rodrigues, J.J., Rabelo, R.D.A., Sousa, N.D.C., and Sobral, J.V, A Proposal for IoT Dynamic Routes Selection based on Contextual Information. 35. Chen Y., Chanet J.P., Hou K.M., Shi H., andDe Sousa, G, A Scalable Context-aware Objective Function (SCAOF) of Routing Protocol for Agricultural Low-power and Lossy Networks (RPAL). 36. Gozuacik, N. and Oktug, S, Parent-aware Routing for Iot Networks. In 37. Airehrour D., Gutierrez J.A., andRay S.K,SecTrust-RPL: A Secure Trust-aware RPL routing Protocol for Internet of Things. 38. Mehta, R. and Parmar, M.M, Trust based Mechanism for Securing Iot Routing Protocol rpl Against Wormhole &Grayhole Attacks. In 39. Shafique U., Khan A., Rehman A., Bashir F., andAlam M,Detection of Rank Attack in Routing Protocol for Low Power and Lossy Networks. |
[1] | Surbhi Gupta, H.D. Aroraa, Anjali Naithania, Anil Chandrab. Reliability Assessment of the Planning and Perception Software Competencies of Self-Driving Cars [J]. Int J Performability Eng, 2021, 17(9): 779-786. |
[2] | Harinee S and Anand Mahendran. Secure ECG Signal Transmission for Smart Healthcare [J]. Int J Performability Eng, 2021, 17(8): 711-721. |
[3] | Azhagiri.M, Shubhanjay Mishra, Shubham Joshi, and Amritash Srivastava. An Integrated System for Initial Prediction of Autism Spectrum Disorder [J]. Int J Performability Eng, 2021, 17(6): 504-510. |
[4] | Ngangbam Phalguni Singh, Sabbisetty Akhil, Ratakonda Vishnu, K. Kirit Redddy, B. Bhanu Prakash, and Shruti Suman. Investigation of Growth Management and Field Optimization on IOT-based Technology for Chilli Cultivation: Hybrid Chilli (F1 Golden Parrot) in Pallavolu, Nellore [J]. Int J Performability Eng, 2021, 17(6): 559-568. |
[5] | Wen-Hsuan Liang, Dun-Wei Cheng, Chih-Wei Hsu, Chia-Wei Lee, Chih-Heng Keand, Albert Y. Zomaya, and Sun-Yuan Hsieh. Dynamic Flow Scheduling Technique for Load Balancing in Fat-Tree Data Center Networks [J]. Int J Performability Eng, 2021, 17(6): 491-503. |
[6] | Vibhuti, Deepika Bhalla, and Genius Walia. Transient Finite Element Method for Computing and Analyzing the Effect of Harmonics on Hysteresis and Eddy Current Loss of Distribution Transformer [J]. Int J Performability Eng, 2021, 17(5): 451-463. |
[7] | Redondin Maxime, Bouillaut Laurent, and Daucher Dimitri. EM Approach for Weibull Analysis in a Strongly Censored Data Context - Application to Road Markings [J]. Int J Performability Eng, 2021, 17(4): 333-342. |
[8] | Yang Tae-Jin. Comparative Study on the Performance Attributes of NHPP Software Reliability Model based on Weibull Family Distribution [J]. Int J Performability Eng, 2021, 17(4): 343-353. |
[9] | Anil Kumar Gulivindala, M.V.A. Raju Bahubalendruni, S.S.V. Prasad Varupala, and Chandrasekar Ravi. Exponential Moving Average Modelled Particle Swarm Optimization Algorithm for Efficient Disassembly Sequence Planning towards Practical Feasibility [J]. Int J Performability Eng, 2021, 17(3): 289-298. |
[10] | Vuppala Swathi and Sandeep Chitreddy. Polynomial Curve Fitting-based Early Room Reflection Analysis using B-Format Room Impulse Response Measurements for Ambient Sound Reproduction [J]. Int J Performability Eng, 2021, 17(3): 307-313. |
[11] | Anita Agárdi, László Kovács, and Tamás Bányai. Neutrality of Vehicle Routing Problem [J]. Int J Performability Eng, 2021, 17(10): 848-857. |
[12] | Latika Kakkar, Deepali Gupta, and Sarvesh Tanwar. A Novel Certificateless Secured Signature Scheme for IoT Data in Healthcare System [J]. Int J Performability Eng, 2021, 17(10): 873-879. |
[13] | Anita Agárdi, László Kovács, and Tamás Bányai. Using Time Series and Classification in Vehicle Routing Problem [J]. Int J Performability Eng, 2021, 17(1): 14-25. |
[14] | Jingyuan Liu, Xu Yang, Jingang Guo, Da Wang, and Hai Zhao. Monitoring Technology of Energy Storage Power Stations based on Discharge Control Scheduling Algorithm [J]. Int J Performability Eng, 2021, 17(1): 95-102. |
[15] | Wei Feng and Yuqin Wu. DDoS Attack Real-Time Defense Mechanism using Deep Q-Learning Network [J]. Int J Performability Eng, 2020, 16(9): 1362-1373. |
|