| [1]. | 
																						 
											 RobbR.A.  Biomedical imaging, visualization, and analysis. John Wiley and Sons, Inc., 1999.
																						 | 
										
																													
																							| [2]. | 
																						 
											 BĕlohlávekJ., DytrychV. and LinhartA.  Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Experimental and Clinical Cardiology, 18(2), p.129, 2013.
																						 | 
										
																													
																							| [3]. | 
																						 
											 MaX., NiuY., GuL., WangY., ZhaoY., BaileyJ. and LuF.  Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 110, p. 107332, 2021.
																						 | 
										
																													
																							| [4]. | 
																						 
											 YangX., LinY., SuJ., WangX., LiX., LinJ. and ChengK.T.  A two-stage convolutional neural network for pulmonary embolism detection from CTPA images. IEEE Access, 7, pp.84849-84857, 2019.
																						 | 
										
																													
																							| [5]. | 
																						 
											 ShiL, RajanD, AbedinS, YellapragadaM.S, BeymerD, and DehghanE.  Automatic Diagnosis of Pulmonary Embolism Using an Attention-guided Framework: A Large-scale Study. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, 121, pp.743-754, 2020.
																						 | 
										
																													
																							| [6]. | 
																						 
											 RajanD., BeymerD., AbedinS. and DehghanE.  Pi-PE: A Pipeline for Pulmonary Embolism Detection using Sparsely Annotated 3D CT Images. In Machine Learning for Health Workshop, pp.220-232, 2020.
																						 | 
										
																													
																							| [7]. | 
																						 
											 HuangS.C., KothariT., BanerjeeI., ChuteC., BallR.L., BorusN., HuangA., PatelB.N., RajpurkarP., IrvinJ. and DunnmonJ.  PENet—A scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ digital medicine, 3(1), pp.1-9, 2020.
																						 | 
										
																													
																							| [8]. | 
																						 
											 LongK., TangL., PuX., RenY., ZhengM., GaoL., SongC., HanS., ZhouM. and DengF.  Probability-based Mask R-CNN for pulmonary embolism detection. Neurocomputing, 422, pp.345-353, 2021.
																						 | 
										
																													
																							| [9]. | 
																						 
											 MuenzelD., FingerleA.A., ZahelT., SauterA., VlassenbroekA., DobritzM., RummenyE.J.and NoëlP.B.  CT angiography: post-processed contrast enhancement for improved detection of pulmonary embolism. Academic radiology, 24(2), pp.131-136, 2017.
																						 | 
										
																													
																							| [10]. | 
																						 
											 LeCunY., BottouL., BengioY. and HaffnerP.  Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86(11), pp.2278-2324, 1998.
																						 | 
										
																													
																							| [11]. | 
																						 
											 SimonyanK, and ZissermanA.  Very deep convolutional networks for large-scale image recognition. ICLR 2015, 2015.
																						 | 
										
																													
																							| [12]. | 
																						 
											 HeK., ZhangX., RenS. and SunJ.  Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.
																						 | 
										
																													
																							| [13]. | 
																						 
											 SzegedyC., LiuW., JiaY., SermanetP., ReedS., AnguelovD., ErhanD., VanhouckeV. and RabinovichA.  Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1-9, 2015.
																						 | 
										
																													
																							| [14]. | 
																						 
											 HowardA.  G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704. 04861, 2017.
																						 | 
										
																													
																							| [15]. | 
																						 
											https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection/data (last accessed March 2021)
																						 | 
										
																													
																							| [16]. | 
																						 
											 TajbakhshN., ShinJ.Y., GotwayM.B.and LiangJ.  Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation. Medical image analysis, 58, p. 101541, 2019.
																						 |