Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (3): 322-332.doi: 10.23940/ijpe.21.03.p8.322332
• Original article • Previous Articles
J Akilandeswaria1,2,3(), G. Jothib1,2,3, A Naveenkumara1,2,3, R. S. Sabeenianc1,2,3, P. Iyyanara1,2,3, and M. E Paramasivamc 1,2,3
J Akilandeswaria, G. Jothib, A Naveenkumara, R. S. Sabeenianc, P. Iyyanara, and M. E Paramasivamc . Detecting Pulmonary Embolism using Deep Neural Networks [J]. Int J Performability Eng, 2021, 17(3): 322-332.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1]. | RobbR.A. Biomedical imaging, visualization, and analysis. John Wiley and Sons, Inc., 1999. |
[2]. | BĕlohlávekJ., DytrychV. and LinhartA. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Experimental and Clinical Cardiology, 18(2), p.129, 2013. |
[3]. | MaX., NiuY., GuL., WangY., ZhaoY., BaileyJ. and LuF. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 110, p. 107332, 2021. |
[4]. | YangX., LinY., SuJ., WangX., LiX., LinJ. and ChengK.T. A two-stage convolutional neural network for pulmonary embolism detection from CTPA images. IEEE Access, 7, pp.84849-84857, 2019. |
[5]. | ShiL, RajanD, AbedinS, YellapragadaM.S, BeymerD, and DehghanE. Automatic Diagnosis of Pulmonary Embolism Using an Attention-guided Framework: A Large-scale Study. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, 121, pp.743-754, 2020. |
[6]. | RajanD., BeymerD., AbedinS. and DehghanE. Pi-PE: A Pipeline for Pulmonary Embolism Detection using Sparsely Annotated 3D CT Images. In Machine Learning for Health Workshop, pp.220-232, 2020. |
[7]. | HuangS.C., KothariT., BanerjeeI., ChuteC., BallR.L., BorusN., HuangA., PatelB.N., RajpurkarP., IrvinJ. and DunnmonJ. PENet—A scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ digital medicine, 3(1), pp.1-9, 2020. |
[8]. | LongK., TangL., PuX., RenY., ZhengM., GaoL., SongC., HanS., ZhouM. and DengF. Probability-based Mask R-CNN for pulmonary embolism detection. Neurocomputing, 422, pp.345-353, 2021. |
[9]. | MuenzelD., FingerleA.A., ZahelT., SauterA., VlassenbroekA., DobritzM., RummenyE.J.and NoëlP.B. CT angiography: post-processed contrast enhancement for improved detection of pulmonary embolism. Academic radiology, 24(2), pp.131-136, 2017. |
[10]. | LeCunY., BottouL., BengioY. and HaffnerP. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86(11), pp.2278-2324, 1998. |
[11]. | SimonyanK, and ZissermanA. Very deep convolutional networks for large-scale image recognition. ICLR 2015, 2015. |
[12]. | HeK., ZhangX., RenS. and SunJ. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016. |
[13]. | SzegedyC., LiuW., JiaY., SermanetP., ReedS., AnguelovD., ErhanD., VanhouckeV. and RabinovichA. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1-9, 2015. |
[14]. | HowardA. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704. 04861, 2017. |
[15]. | https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection/data (last accessed March 2021) |
[16]. | TajbakhshN., ShinJ.Y., GotwayM.B.and LiangJ. Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation. Medical image analysis, 58, p. 101541, 2019. |
[1] | Wei Feng and Yuqin Wu. DDoS Attack Real-Time Defense Mechanism using Deep Q-Learning Network [J]. Int J Performability Eng, 2020, 16(9): 1362-1373. |
[2] | Zhifeng Zhang, Xiao Cui, Pu Li, Jintao Jiang, and Xiaohui Ji. Hyperspectral Data Analysis based on Integrated Deep Learning [J]. Int J Performability Eng, 2020, 16(8): 1225-1234. |
[3] | Shuo Meng, Jianshe Kang, Kuo Chi, and Xupeng Die. Intelligent Fault Diagnosis of Gearbox based on Multiple Synchrosqueezing S-Transform and Convolutional Neural Networks [J]. Int J Performability Eng, 2020, 16(4): 528-536. |
[4] | Yongquan Xia, Sihai Qiao, Qianqian Ye. Automatic Liver Segmentation Method based on Deep Learning and Region Growing Algorithm [J]. Int J Performability Eng, 2020, 16(12): 1900-1909. |
[5] | Xincheng Cao, Wanshan Liu, Bin Yao, Qixin Lan, Weifang Sun. Detection and Classification of Surface Defects of Magnetic Tile based on SE-U-Net [J]. Int J Performability Eng, 2020, 16(12): 1910-1920. |
[6] | Min Tao, Jiasheng Hao and Xin Jin. A Reliability Management System for Network Systems using Deep Learning and Model Driven Approaches [J]. Int J Performability Eng, 2020, 16(11): 1753-1761. |
[7] | Siyu Li, Shaoluo Huang, Yangyang Zhang, Lijun Cao, and Weiyi Wu. Deep Learning in Fault Diagnosis of Complex Mechanical Equipment [J]. Int J Performability Eng, 2020, 16(10): 1548-1555. |
[8] | Weiguo Pan, En Fu, Bingxin Xu, Songyin Dai, and Feng Pan. Traffic Sign Detection via Efficient ROI Detector and Deep Convolution Neural Network [J]. Int J Performability Eng, 2020, 16(10): 1566-1578. |
[9] | Chang Su and Deling Huang. Hybrid Recommender System based on Deep Learning Model [J]. Int J Performability Eng, 2020, 16(1): 118-129. |
[10] | Lingling Wang, Wenyin Gong, and Xiang Li. Deep Convolutional Neural Network and Its Application in Image Recognition of Road Safety Projects [J]. Int J Performability Eng, 2019, 15(8): 2182-2189. |
[11] | Shuang Liu, Xing Cui, Jiayi Li, Hui Yang, and Niko Lukač. Pedestrian Detection based on Faster R-CNN [J]. Int J Performability Eng, 2019, 15(7): 1792-1801. |
[12] | Ying Wang, Aili Wang, Ronghui Wang, Haiyang Liu, and Yuji Iwahori. Target Tracking Algorithm based on Context-Aware Deep Feature Compression [J]. Int J Performability Eng, 2019, 15(7): 1802-1812. |
[13] | Wenfang Zhao, Yong Zhou, and Wei Tang. Novel Convolution and LSTM Model for Forecasting PM2.5 Concentration [J]. Int J Performability Eng, 2019, 15(6): 1528-1537. |
[14] | Sizhe Huang, Huosheng Xu, and Xuezhi Xia. Imbalanced Remote Sensing Ship Image Classification [J]. Int J Performability Eng, 2019, 15(6): 1709-1715. |
[15] | Yoshinobu Tamura and Shigeru Yamada. Fault Big Data Analysis Tool based on Deep Learning [J]. Int J Performability Eng, 2019, 15(5): 1289-1296. |
|