Int J Performability Eng ›› 2019, Vol. 15 ›› Issue (2): 353-361.doi: 10.23940/ijpe.19.02.p1.353361
Submitted on
;
Revised on
;
Accepted on
Contact:
Wang Yuwei
E-mail:whelpwolf@foxmail.com
Yuwei Wang and Hailin Feng . Reliability Analysis based on Inverse Gauss Degradation Process and Evidence Theory [J]. Int J Performability Eng, 2019, 15(2): 353-361.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | X. R.Cheng and J. Y. Li, “Remaining Lifetime Prediction of Blowout Preventer Valve based on Fusion of Lifetime Data and Degradation Data, ”in Proceedings of Journal of Shandong University of Science andTechnology, Vol. 36, No. 5, pp.23-28, 2017 |
2 |
L. S.Khanh and F. A. B. Mitra, “Remaining Useful Lifetime Estimation and Noisy Gamma Deterioration Process, ”in Proceedings of Reliability Engineering and System Safety, Vol. 149, pp.76-87, 2016
doi: 10.1016/j.ress.2015.12.016 |
3 |
Z. S.Ye and N. Chen, “The Inverse Gaussian Process as a Degradation Model, ” Proceedings of Technometrics, Vol. 56, No. 3, pp.302-311, 2014
doi: 10.1080/00401706.2013.830074 |
4 |
F. Duanand G.Wang, “Reliability Modeling of Two-Phase Inverse Gaussian Degradation Process, ”in Proceedings of the Second International Conference on Reliability Systems Engineering, IEEE, pp.1-6, 2017
doi: 10.1109/ICRSE.2017.8030736 |
5 | H. Guo, T. Zhang, L. Y. Ping, E. S. Pan, “Research on Competing Failure Modeling based on the Inverse Gaussian Process, ”in Proceedings of Industrial Engineering and Management, Vol. 22, No. 1, pp. 89-94, 2017 |
6 |
J. B. Liu, D. H. Pan, J.Cao, “Remaining Useful Life Estimation using an Inverse Gaussian Degradation Model, ”Neurocomputing, Vol. 185, pp.64-72, 2016
doi: 10.1016/j.neucom.2015.12.041 |
7 | Y. Zhou, L. V. Wei-Min, and Y. Sun, “Fusion Prediction Method for the Life of MEMS Accelerometer based on Inverse Gaussian Process, ” Journal of Chinese Inertial Technology, 2017 |
8 |
W. Peng, Y. J. Yang, J. Mi and H. Z. Huang, “Bayesian Degradation Analysis with Inverse Gaussian Process Models under Time Varying Degradation Rates, ”IEEE Transactions on Reliability, No. 99, pp.1-13, 2017
doi: 10.1109/TR.2016.2635149 |
9 | X. Zhang, Y. Li, X. Wang, “Maintenance Strategy of Corroded Oil-Gas Pipeline based on Inverse Gaussian Process, ”in Proceedings of Acta Petrolei Sinica, Vol. 38, No. 3, pp.356-362, 2017 |
10 |
W. Peng, Y. F. Li, Y. J. Yang, S. P. Zhu, H. G. Huang, “Bivariate Analysis of Incomplete Degradation Observations based on Inverse Gaussian Processes and Copulas, ”IEEE Transactions on Reliability, Vol.65, No. 2, pp. 624-639, 2016
doi: 10.1109/TR.2015.2513038 |
11 | F. Ye, J. Chen, and Y.Li, “Improvement of D-S Evidence Theory for Multi-Sensor Conflicting Information, ” Symmetry, 2017 |
12 |
J. B.Yang and M. G. Singh, “An Evidential Reasoning Approach for Multiple Attribute Decision Making with Uncertainty, ” IEEE Transactions on Systems Man and Cybernetics, Vol. 22, No. 1, pp. 1-18, 1994
doi: 10.1109/21.259681 |
13 |
Z. Zhang, C. Jiang, X. X. Ruan, and F. J. Guan, “A Novel Evidence Theory Model Dealing with Correlated Variables and the Corresponding Structural Reliability Analysis Method, ”Structural & Multidisciplinary Optimization, No. 1- 3, pp.1-16, 2017
doi: 10.1007/s00158-017-1843-9 |
14 |
L. F. Ming, C. H. Hu, Z. J. Zhou, P. Wang, “A degradation Modeling Method based on Inverse Gaussian Process and Evidential Reasoning, ”in Proceedings of Electronics Optics & Control, Vol. 22, No. 1, pp. 92-96, 2015
doi: 10.3969/j.issn.1671-637X.2015.01.021 |
15 |
L. Liang, Y. Shen, Q . Cai, and Y. Gu, “A Reliability Data Fusion Method based on Improved D-S Evidence Theory, ”in Proceedings of International Conference on Reliability, Maintainability and Safety, IEEE, pp.1-6, 2017
doi: 10.1109/ICRMS.2016.8050147 |
16 | H. Wang, G. J. Wang, F. J. Duan, “Planning of Step-Stress Accelerated Degradation Test based on the Inverse Gaussian Process, ”Reliability Engineering & System Safety, Vol. 154, pp.97-105, 2016 |
17 |
D. Dubois and H. Prade, “A Survey of Belief Revision and Updating Rules in Various Uncertainty Models, ” Hoboken, John Wiley & Sons, 1994
doi: 10.1002/int.4550090105 |
[1] | Lichun Chen, Junfang Xue, Xiufen Zhang, and Yanliang Wang. Optimization and Reliability Analysis of Movable Jaw Structure of Jaw Crusher based on Response Surface [J]. Int J Performability Eng, 2019, 15(5): 1408-1416. |
[2] | Lishuang Zhao. Data Aggregation in WSN based on Deep Self-Encoder [J]. Int J Performability Eng, 2018, 14(11): 2723-2730. |
|