Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (9): 741-755.doi: 10.23940/ijpe.21.09.p1.741755
Ngan Trana, Haihua Chena, Janet Jiangb, Jay Bhuyanc, Junhua Dinga,*
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: junhua.ding@unt.edu
Ngan Tran, Haihua Chen, Janet Jiang, Jay Bhuyan, Junhua Ding. Effect of Class Imbalance on the Performance of Machine Learning-based Network Intrusion Detection [J]. Int J Performability Eng, 2021, 17(9): 741-755.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Lis, P. and Mendel, J.Cyberattacks on critical infrastructure: An economic perspective. [2] Eamon, Javers. and Amanda, Macias. [3] Pervez, M.S. and Farid, D.M.Feature selection and intrusion classification in NSL-KDD cup 99 dataset employing SVMs. In [4] Halimaa, A. and Sundarakantham, K.Machine learning based intrusion detection system. In [5] Latah, M. and Toker, L.An efficient flow-based multi-level hybrid intrusion detection system for software-defined networks. [6] Nandi S., Maity S., andDas M.NIDF: An Ensemble-inspired Feature Learning Framework for Network Intrusion Detection. In [7] Yan B., Han G., Sun M., andYe S.A novel region adaptive SMOTE algorithm for intrusion detection on imbalanced problem. In [8] Liu J., Gao Y., andHu F.A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. [9] Gao X., Shan C., Hu C., Niu Z., andLiu Z.An adaptive ensemble machine learning model for intrusion detection. [10] Liu X., Li T., Zhang R., Wu D., Liu Y., andYang Z.A GAN and Feature Selection-Based Oversampling Technique for Intrusion Detection.Security and Communication Networks, 2021. [11] Su T., Sun H., Zhu J., Wang S., andLi Y.BAT: Deep learning methods on network intrusion detection using NSL-KDD dataset. [12] Choraś, M. and Pawlicki, M.Intrusion detection approach based on optimised artificial neural network. [13] Bamakan S.M.H., Wang, H., and Shi, Y. Ramp loss K-Support Vector Classification-Regression; a robust and sparse multi-class approach to the intrusion detection problem. [14] Li Z., Qin Z., Huang K., Yang X., andYe S.Intrusion detection using convolutional neural networks for representation learning. In [15] Jiang K., Wang W., Wang A., andWu H.Network intrusion detection combined hybrid sampling with deep hierarchical network. [16] Wu K., Chen Z., andLi W.A novel intrusion detection model for a massive network using convolutional neural networks. [17] Shams E.A., Rizaner A., andUlusoy A.H.A novel context-aware feature extraction method for convolutional neural network-based intrusion detection systems. [18] Yang Y., Zheng K., Wu C., andYang Y.Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. [19] Javaid A., Niyaz Q., Sun W., andAlam M.A deep learning approach for network intrusion detection system. [20] Yin C., Zhu Y., Fei J., andHe X.A deep learning approach for intrusion detection using recurrent neural networks. [21] Devan, P. and Khare, N.An efficient XGBoost-DNN-based classification model for network intrusion detection system. [22] Yan, B. and Han, G.LA-GRU: Building combined intrusion detection model based on imbalanced learning and gated recurrent unit neural network.security and communication networks, 2018. [23] Ring M., Wunderlich S., Scheuring D., Landes D., andHotho A.A survey of network-based intrusion detection data sets. [24] Chen H., Tran N., Thumati A.S., Bhuyan J., andDing J.Data Curation and Quality Assurance for Machine Learning-based Cyber Intrusion Detection.arXiv preprint arXiv:2105.10041, 2021. [25] Liu L., Wang P., Lin J., andLiu L.Intrusion detection of imbalanced network traffic based on machine learning and deep learning. [26] Abrar I., Ayub Z., Masoodi F., andBamhdi A.M.A machine learning approach for intrusion detection system on NSL-KDD dataset. In [27] Parsaei M.R., Rostami S.M., andJavidan R.A hybrid data mining approach for intrusion detection on imbalanced NSL-KDD dataset. [28] Shone N., Ngoc T.N., Phai V.D., andShi Q.A deep learning approach to network intrusion detection. [29] Kang, M.J. and Kang, J.W.Intrusion detection system using deep neural network for in-vehicle network security. [30] Al J.K., Aljnidi M., andDesouki M.S.Anomaly detection optimization using big data and deep learning to reduce false-positive. [31] Bagui, S. and Li, K.Resampling imbalanced data for network intrusion detection datasets. [32] Tesfahun, A. and Bhaskari, D.L.Intrusion detection using random forests classifier with SMOTE and feature reduction. In [33] Zhang H., Huang L., Wu C.Q., andLi Z.An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset. [34] Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., andLiu T.Y.Lightgbm: A highly efficient gradient boosting decision tree. [35] Chen, T. and Guestrin, C.Xgboost: A scalable tree boosting system. In [36] Devlin J., Chang M.W., Lee K., andToutanova K.Bert: Pre-training of deep bidirectional transformers for language understanding.arXiv preprint arXiv:1810.04805, 2018. [37] Danka, T. and Horvath, P. modAL: A modular active learning framework for Python.arXiv preprint arXiv:1805.00979, 2018. [38] Hastie T., Rosset S., Zhu J., andZou H.Multi-class adaboost. [39] Chawla N.V., Bowyer K.W., Hall L.O., andKegelmeyer W.P.SMOTE: synthetic minority over-sampling technique. [40] Fernández A., Garcia S., Herrera F., andChawla N.V.SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. [41] Tan X., Su S., Huang Z., Guo X., Zuo Z., Sun X., andLi L.Wireless sensor networks intrusion detection based on SMOTE and the random forest algorithm. [42] Revathi, S. and Malathi, A.A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. [43] Bhuyan M.H., Bhattacharyya D.K., andKalita J.K.Network anomaly detection: methods, systems and tools. [44] He, H. and Garcia, E.A.Learning from imbalanced data. [45] Huang S., Liu Y., Fung C., An W., He R., Zhao Y., Yang H., andLuan Z.A gated few-shot learning model for anomaly detection. In |
[1] | Ashu Mehta, Navdeep Kaur, and Amandeep Kaur. A Review of Software Fault Prediction Techniques in Class Imbalance Scenarios [J]. Int J Performability Eng, 2025, 21(3): 123-130. |
[2] | Vikas, Charu Wahi, Bharat Bhushan Sagar, and Manisha Manjul. Trust Management in WSN using ML for Detection of DDoS Attacks [J]. Int J Performability Eng, 2025, 21(3): 157-167. |
[3] | Ashu Mehta, Navdeep Kaur, and Amandeep Kaur. Addressing Class Imbalance in Software Fault Prediction using BVPC-SENN: A Hybrid Ensemble Approach [J]. Int J Performability Eng, 2025, 21(2): 94-103. |
[4] | Arpna Saxena and Sangeeta Mittal. CluSHAPify: Synergizing Clustering and SHAP Value Interpretations for Improved Reconnaissance Attack Detection in IIoT Networks [J]. Int J Performability Eng, 2025, 21(1): 36-47. |
[5] | Seema Kalonia and Amrita Upadhyay. Comparative Analysis of Machine Learning Model and PSO Optimized CNN-RNN for Software Fault Prediction [J]. Int J Performability Eng, 2025, 21(1): 48-55. |
[6] | Vikas Kumar, Charu Wahi, Bharat Bhushan Sagar, and Manisha Manjul. Ensemble Learning Based Intrusion Detection for Wireless Sensor Network Environment [J]. Int J Performability Eng, 2024, 20(9): 541-551. |
[7] | Kalyani H. Deshmukh, Gajendra R. Bamnote, and Pratik K Agrawal. A Novel Approach for Drought Monitoring and Evaluation using Time Series Analysis and Deep Learning [J]. Int J Performability Eng, 2024, 20(8): 498-509. |
[8] | Saurabh Saxena, and Chetna Gupta. Optimizing Bug Resolution: A Data-Driven Developer Recommendation System [J]. Int J Performability Eng, 2024, 20(8): 510-519. |
[9] | Lakshya Vaswani, Sai Sri Harsha, Subham Jaiswal, and Aju D. Unravelling Complexity: Investigating the Effectiveness of SHAP Algorithm for Improving Explainability in Network Intrusion System Across Machine and Deep Learning Models [J]. Int J Performability Eng, 2024, 20(7): 421-431. |
[10] | Meenakshi Chawla and Meenakshi Pareek. A Hybrid Deep Learning Perspective for Software Effort Estimation [J]. Int J Performability Eng, 2024, 20(7): 442-450. |
[11] | Ajeet Kumar Sharma and Rakesh Kumar. IoT Malware Detection and Dynamic Analysis of MQTT Simulated Network [J]. Int J Performability Eng, 2024, 20(7): 451-459. |
[12] | Abhishek Gupta and Jaspreet Singh. Data-Driven Security Framework for VANET using Firefly and ANN [J]. Int J Performability Eng, 2024, 20(6): 344-354. |
[13] | Vikas Verma, Arun Malik, and Isha Batra. Analyzing and Classifying Malware Types on Windows Platform using an Ensemble Machine Learning Approach [J]. Int J Performability Eng, 2024, 20(5): 312-318. |
[14] | Harshita Batra and Leema Nelson. ESD: E-mail Spam Detection using Cybersecurity-Driven Header Analysis and Machine Learning based Content Analysis [J]. Int J Performability Eng, 2024, 20(4): 205-213. |
[15] | Manu Jyoti Gupta and Parveen Sehgal. Optimizing Credit Card Fraud Detection: Classifier Performance and Feature Selection Empowered by Grasshopper Algorithm [J]. Int J Performability Eng, 2024, 20(3): 177-185. |
|