Int J Performability Eng ›› 2025, Vol. 21 ›› Issue (5): 249-258.doi: 10.23940/ijpe.25.05.p2.249258
Previous Articles Next Articles
Syed Mohsin Bukhari* and Ishan Kumar
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: syedmohsin.2024@lpu.in
Syed Mohsin Bukhari and Ishan Kumar. Real-Time AI in Surgery: A Review of Precision, Innovation, and Future Directions in Surgical Assistance [J]. Int J Performability Eng, 2025, 21(5): 249-258.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Solanki S.L., Pandrowala S., Nayak A., Bhandare M., Ambulkar R.P., and Shrikhande S.V., 2021. Artificial intelligence in perioperative management of major gastrointestinal surgeries. [2] Eppler M.B., Sayegh A.S., Maas M., Venkat A., Hemal S., Desai M.M., Hung A.J., Grantcharov T., Cacciamani G.E., and Goldenberg M.G., 2023. Automated capture of intraoperative adverse events using artificial intelligence: a systematic review and meta-analysis. [3] Farhadi F., Barnes M.R., Sugito H.R., Sin J.M., Henderson E.R., and Levy J.J., 2022. Applications of artificial intelligence in orthopaedic surgery. [4] Tafat W., Budka M., David McDonald M.B.E., and Wainwright T.W., 2024. Artificial intelligence in orthopaedic surgery: a comprehensive review of current innovations and future directions. [5] Tangsrivimol J.A., Schonfeld E., Zhang M., Veeravagu A., Smith T.R., Härtl R., Lawton M.T., El-Sherbini A.H., Prevedello D.M., Glicksberg B.S., and Krittanawong C., 2023. Artificial intelligence in neurosurgery: a state-of-the-art review from past to future. [6] Zeineldin R.A., Junger D., Mathis-Ullrich F., and Burgert O., 2023. Development of an AI-driven system for neurosurgery with a usability study: a step towards minimal invasive robotics. [7] Pandya A.,2023. ChatGPT-enabled davinci surgical robot prototype: advancements and limitations. [8] Abbasi N., and Hussain H.K., 2024. Integration of artificial intelligence and smart technology: AI-driven robotics in surgery: precision and efficiency. [9] Okamura A.M.,2009. Haptic feedback in robot-assisted minimally invasive surgery. [10] Murdoch B.,2021. Privacy and artificial intelligence: challenges for protecting health information in a new era. [11] Power D.,2024. Ethical considerations in the era of AI, automation, and surgical robots: there are plenty of lessons from the past. [12] Amin A., Cardoso S.A., Suyambu J., Saboor H.A., Cardoso R.P., Husnain A., Isaac N.V., Backing H., Mehmood D., Mehmood M., and Maslamani A.N.J., 2024. Future of artificial intelligence in surgery: a narrative review. [13] Guni A., Varma P., Zhang J., Fehervari M., and Ashrafian H., 2024. Artificial intelligence in surgery: the future is now. [14] Iftikhar M., Saqib M., Zareen M., and Mumtaz H., 2024. Artificial intelligence: revolutionizing robotic surgery. [15] Kenig N., Monton Echeverria J., and Muntaner Vives A., 2024. Artificial intelligence in surgery: A systematic review of use and validation. [16] Xiao Q., Fu B., Song K., Chen S., Li J., and Xiao J., 2020. Comparison of surgical techniques in living donor nephrectomy: A systematic review and bayesian network meta-analysis. [17] Bodenstedt S., Wagner M., Müller-Stich B.P., Weitz J., and Speidel S., 2020. Artificial intelligence-assisted surgery: potential and challenges. [18] Khojastehnezhad M.A., Youseflee P., Moradi A., Ebrahimzadeh M.H., and Jirofti N., 2025. Artificial intelligence and the state of the art of orthopedic surgery. [19] Loftus T.J., Tighe P.J., Filiberto A.C., Efron P.A., Brakenridge S.C., Mohr A.M., Rashidi P., Upchurch G.R., and Bihorac A., 2020. Artificial intelligence and surgical decision-making. [20] Bellini V., Russo M., Domenichetti T., Panizzi M., Allai S., and Bignami E.G., 2024. Artificial intelligence in operating room management. [21] Zarghami A.,2024. Role of artificial intelligence in surgical decision-making: A comprehensive review: role of AI in SDM. [22] Zhou Z., Yang Z., Jiang S., Zhu T., Ma S., Li Y., and Zhuo J., 2023. Design and validation of a navigation system of multimodal medical images for neurosurgery based on mixed reality. [23] Bergholz M., Ferle M., and Weber B.M., 2023. The benefits of haptic feedback in robot assisted surgery and their moderators: a meta-analysis. [24] Kazemzadeh K., Akhlaghdoust M., and Zali A., 2023. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. [25] Rivero-Moreno Y., Echevarria S., Vidal-Valderrama C., Pianetti L., Cordova-Guilarte J., Navarro-Gonzalez J., Acevedo-Rodríguez J., Dorado-Avila G., Osorio-Romero L., Chavez-Campos C., and Acero-Alvarracín K., 2023. Robotic surgery: a comprehensive review of the literature and current trends. [26] Kolbinger F.R., Bodenstedt S., Carstens M., Leger S., Krell S., Rinner F.M., Nielen T.P., Kirchberg J., Fritzmann J., Weitz J., and Distler M., 2024. Artificial intelligence for context-aware surgical guidance in complex robot-assisted oncological procedures: an exploratory feasibility study. [27] Ahmed F.A., Yousef M., Ahmed M.A., Ali H.O., Mahboob A., Ali H., Shah Z., Aboumarzouk O., Al Ansari A., and Balakrishnan S., 2024. Deep learning for surgical instrument recognition and segmentation in robotic-assisted surgeries: a systematic review. [28] Chen X., Xie H., Tao X., Wang F.L., Leng M., and Lei B., 2024. Artificial intelligence and multimodal data fusion for smart healthcare: topic modeling and bibliometrics. [29] Lin P.Y., Chen T.C., Lin C.J., Huang C.C., Tsai Y.H., Tsai Y.L., and Wang C.Y., 2024. The use of augmented reality (AR) and virtual reality (VR) in dental surgery education and practice: A narrative review. [30] Colborn K., Brat G., and Callcut R., 2023. Predictive analytics and artificial intelligence in surgery—opportunities and risks. [31] Ferreres A.R.,2024. Ethical aspects of artificial intelligence in general surgical practice. [32] Morris M.X., Fiocco D., Caneva T., Yiapanis P., and Orgill D.P., 2024. Current and future applications of artificial intelligence in surgery: implications for clinical practice and research. |
[1] | Shobhanam Krishna and Sumati Sidharth. AI-Powered Workforce Analytics: Maximizing Business and Employee Success through Predictive Attrition Modelling [J]. Int J Performability Eng, 2023, 19(3): 203-215. |
[2] | Zhiguo Li,bo Hao, and Wengang Yan. Reliability Prediction for Factory Casualty using Grey System Theory [J]. Int J Performability Eng, 2020, 16(6): 866-874. |
[3] | Yi Song. Innovation of Smart Jewelry for the Future [J]. Int J Performability Eng, 2019, 15(2): 591-601. |
[4] | Ruiya He. Effects of Sci-Tech Innovation and Financial Capital Integration based on SVAR Model [J]. Int J Performability Eng, 2018, 14(12): 3159-3166. |
[5] | Pengtao Shi, Yan Li, and Mingshun Yang. Formation and Laws of Convex on Single-Point Thermal Incremental Forming Part [J]. Int J Performability Eng, 2018, 14(12): 3247-3256. |
[6] | Menglei Li, Hao Liu, Fuxing Li, and Maohua Xiao. Kinematics Analysis and Optimization Design of Multi-Link High-Speed Precision Press [J]. Int J Performability Eng, 2018, 14(11): 2798-2807. |
|