[1] Rahman A., Hossain M.S., Muhammad G., Kundu D., Debnath T., Rahman M., Khan M.S.I., Tiwari P., andBand S.S., 2023. Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues. Cluster Computing,26(4), pp. 2271-2311. [2] Kairouz P., McMahan H.B., Avent B., Bellet A., Bennis M., Bhagoji A.N., Bonawitz K., Charles Z., Cormode G., Cummings R., andD’Oliveira R.G., 2021. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning,14(1-2), pp. 1-210. [3] Kumar Y., andSingla R., 2021. Federated learning systems for healthcare: perspective and recent progress.Federated Learning Systems: Towards Next-Generation AI, pp. 141-156. [4] Guo K., Chen T., Ren S., Li N., Hu M., andKang J., 2022. Federated learning empowered real-time medical data processing method for smart healthcare. IEEE/ACM Transactions on Computational Biology and Bioinformatics,21(4), pp. 869-879. [5] McMahan B., Moore E., Ramage D., Hampson S., andy Arcas B.A., 2017. Communication-efficient learning of deep networks from decentralized data. InArtificial Intelligence and Statistics, pp. 1273-1282. [6] Nishio T., andYonetani R., 2019. Client selection for federated learning with heterogeneous resources in mobile edge. InICC 2019-2019 IEEE International Conference on Communications (ICC), pp. 1-7. [7] Narwaria M., andJaiswal S., 2024. Multicriteria client selection model using class topper optimization based optimal federated learning for healthcare informatics. Cluster Computing,27(8), pp. 10325-10342. [8] Abdelmoniem A.M., Sahu A.N., Canini M., andFahmy S.A., 2023. Refl: resource-efficient federated learning. InProceedings of the Eighteenth European Conference on Computer Systems, pp. 215-232. [9] AbdulRahman S., Tout H., Mourad A., andTalhi C., 2020. FedMCCS: multicriteria client selection model for optimal IoT federated learning. IEEE Internet of Things Journal,8(6), pp. 4723-4735. [10] Mohanta T.K., andDas D.K., 2021. Class topper optimization based improved localization algorithm in wireless sensor network. Wireless Personal Communications,119(4), pp. 3319-3338. |