Int J Performability Eng ›› 2024, Vol. 20 ›› Issue (10): 610-620.doi: 10.23940/ijpe.24.10.p3.610620
• Original article • Previous Articles Next Articles
Hannousse Abdelhakimab*() and Talha Ziedb
Submitted on
;
Revised on
;
Accepted on
Contact:
Hannousse Abdelhakim
E-mail:hannousse.abdelhakim@univ-guelma.dz
About author:
E-mail address: hannousse.abdelhakim@univ-guelma.dz
Hannousse Abdelhakim and Talha Zied. A Hybrid Ensemble Learning Approach for Detecting Bots on Twitter [J]. Int J Performability Eng, 2024, 20(10): 610-620.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Kaplan, A.M. and Haenlein, M. , 2010. Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53( 1), pp. 59- 68. |
[2] | Mangold, W.G. and Faulds, D.J. , 2009. Social media: The new hybrid element of the promotion mix. Business horizons, 52( 4), pp. 357- 365. |
[3] | Freelon, D. , McIlwain, C.D. and Clark, M. , 2016. Beyond the hashtags:# Ferguson,# Blacklivesmatter, and the online struggle for offline justice. Center for Media & Social Impact, American University, Forthcoming. |
[4] | Aljabri, M. , Zagrouba, R. , Shaahid, A. , Alnasser, F. , Saleh, A . and Alomari, D.M. , 2023. Machine learning-based social media bot detection: a comprehensive literature review. Social Network Analysis and Mining, 13( 1), p. 20. |
[5] | Cresci, S. , Di Pietro, R. , Petrocchi, M. , Spognardi, A . and Tesconi, M. , 2017, April. The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race. In Proceedings of the 26th international conference on world wide web companion (pp. 963- 972). |
[6] | Shafahi, M. , Kempers, L . and Afsarmanesh, H. , 2016, December. Phishing through social bots on Twitter. In 2016 IEEE international conference on big data (big data) (pp . 3703- 3712). IEEE. |
[7] | Shao, C. , Ciampaglia, G.L. , Varol, O. , Yang, K.C. , Flammini, A . and Menczer, F. , 2018. The spread of low-credibility content by social bots. Nature communications, 9( 1), pp. 1- 9. |
[8] | Hayawi, K. , Saha, S. , Masud, M.M. , Mathew, S.S. and Kaosar, M. , 2023. Social media bot detection with deep learning methods: a systematic review. Neural Computing and Applications, 35( 12), pp. 8903- 8918. |
[9] | Orabi, M. , Mouheb, D. , Al Aghbari, Z . and Kamel, I. , 2020. Detection of bots in social media: a systematic review. Information Processing & Management, 57( 4), p. 102250. |
[10] | Cresci, S. , Di Pietro, R. , Petrocchi, M. , Spognardi, A . and Tesconi, M. , 2015. Fame for sale: Efficient detection of fake Twitter followers. Decision Support Systems, 80, pp. 56- 71. |
[11] | Abreu, J.V.F. , Ralha, C.G. and Gondim, J.J.C. , 2020, November. Twitter bot detection with reduced feature set. In 2020 IEEE International Conference on Intelligence and Security Informatics (ISI) (pp . 1- 6). IEEE. |
[12] | Yang, K.C. , Varol, O. , Hui, P.M. and Menczer, F. , 2020, April. Scalable and generalizable social bot detection through data selection. In Proceedings of the AAAI conference on artificial intelligence (Vol . 34, No. 01, pp. 1096- 1103). |
[13] | Alarfaj, F.K. , Ahmad, H. , Khan, H.U. , Alomair, A.M. , Almusallam, N . and Ahmed, M. , 2023. Twitter bot detection using diverse content features and applying machine learning algorithms. Sustainability, 15( 8), p. 6662. |
[14] | Färber, M. , Qurdina, A . and Ahmedi, L. , 2019, September. Identifying Twitter Bots Using a Convolutional Neural Network. In CLEF (Working Notes). |
[15] | Garcia-Silva, A. , Berrio, C . and Gomez-Perez, J.M. , 2021. Understanding transformers for bot detection in Twitter. arXiv preprint arXiv:2104.06182. |
[16] | Echeverr a, J. , De Cristofaro, E. , Kourtellis, N. , Leontiadis, I. , Stringhini, G . and Zhou, S. , 2018, December. LOBO: Evaluation of generalization deficiencies in Twitter bot classifiers. In Proceedings of the 34th annual computer security applications conference (pp. 137- 146). |
[17] | Alhassun, A.S. and Rassam, M.A. , 2022. A combined text-based and metadata-based deep-learning framework for the detection of spam accounts on the social media platform twitter. Processes, 10( 3), p. 439. |
[18] | Martín-Gutiérrez, D. , Hernández-Peñaloza, G. , Hernández, A.B. , Lozano-Diez, A . and Álvarez, F. , 2021. A deep learning approach for robust detection of bots in twitter using transformers. IEEE Access, 9, pp. 54591- 54601. |
[19] | X Developer Platform, X API, , accessed on October 1, 2024. |
[20] | Feng, S. , Wan, H. , Wang, N. , Li, J . and Luo, M., 2021, October. Twibot-20: A comprehensive twitter bot detection benchmark. In Proceedings of the 30th ACM international conference on information & knowledge management (pp. 4485- 4494). |
[21] | Hayawi, K. , Mathew, S. , Venugopal, N. , Masud, M.M. and Ho, P.H., 2022. DeeProBot: a hybrid deep neural network model for social bot detection based on user profile data. Social Network Analysis and Mining, 12( 1), p. 43. |
[22] | Rodríguez-Ruiz, J. , Mata-Sánchez, J.I. , Monroy, R. , Loyola-González, O . and López-Cuevas, A. , 2020. A one-class classification approach for bot detection on Twitter. Computers & Security, 91, p. 101715. |
[1] | Ashu Mehta, Navdeep Kaur, and Amandeep Kaur. Addressing Class Imbalance in Software Fault Prediction using BVPC-SENN: A Hybrid Ensemble Approach [J]. Int J Performability Eng, 2025, 21(2): 94-103. |
[2] | Vikas Kumar, Charu Wahi, Bharat Bhushan Sagar, and Manisha Manjul. Ensemble Learning Based Intrusion Detection for Wireless Sensor Network Environment [J]. Int J Performability Eng, 2024, 20(9): 541-551. |
[3] | Mansi Pandey, Chetan Sharma, Shamneesh Sharma, and Trapty Aggarwal. Hybrid Technique of Topic Modelling and Text Summarization: A Case Study on Predicting Trends in Green Computing [J]. Int J Performability Eng, 2024, 20(3): 139-148. |
[4] | Ronit Bali, Anukansha Sharma, Shuchi Mala, and Yash Malhan. Modeling the Geospatial Trend Changes in Jobs and Layoffs by Performing Sentiment Analysis on Twitter Data [J]. Int J Performability Eng, 2024, 20(2): 120-130. |
[5] | Singh Yogendra, Kumar Rishu, and Kabdal Soumya. Clipify: A Novel Approach to Summarize YouTube Video using LSA [J]. Int J Performability Eng, 2024, 20(10): 602-609. |
[6] | Nidhi Mishra, Farhan Khan, and Amit Mishra. Revolutionizing Text Summarization: A Breakthrough in Content Compression [J]. Int J Performability Eng, 2024, 20(1): 40-47. |
[7] | Rakesh Kumar, Sunny Arora, Ashima Arya, Neha Kohli, Vaishali Arya, and Ekta Singh. Ensemble Learning for Appraising English Text Readability using Gompertz Function [J]. Int J Performability Eng, 2023, 19(6): 388-396. |
[8] | Neha Kohli and Tapas Kumar. Envisaging Alzheimer’s Disease Stage through Fuzzy Rank-Based Ensemble of Transfer Learning Models [J]. Int J Performability Eng, 2023, 19(6): 397-406. |
[9] | Mahima Yadav and Ishan Kumar. Image Processing-Based Transliteration from Hindi to English [J]. Int J Performability Eng, 2023, 19(5): 334-341. |
[10] | Yogendra Singh, Rishu Kumar, Soumya Kabdal, and Prashant Upadhyay. YouTube Video Summarizer using NLP: A Review [J]. Int J Performability Eng, 2023, 19(12): 817-823. |
[11] | Rushali A. Deshmukh. Naive Bayes and Neural Network Techniques for Marathi Poem Classification into Nine Rasa using Feature Selection [J]. Int J Performability Eng, 2022, 18(9): 626-636. |
[12] | Cheran Ratnam and Junhua Ding. Big Four Bank Performance on Facebook and Instagram: An Analysis of Post Engagement [J]. Int J Performability Eng, 2022, 18(7): 475-484. |
[13] | Poonam Narang, Ajay Vikram Singh, and Himanshu Monga. Hybrid Metaheuristic Approach for Detection of Fake News on Social Media [J]. Int J Performability Eng, 2022, 18(6): 434-443. |
[14] | K. Eswara Rao, G. Appa Rao, and P. Sankara Rao. A Weighted Ada-Boosting Approach for Software Defect Prediction using Characterized Code Features Associated with Software Quality [J]. Int J Performability Eng, 2022, 18(11): 798-807. |
[15] | Mamta Bhamare, and K Ashokkumar. Personality Prediction through Social Media Posts [J]. Int J Performability Eng, 2022, 18(11): 817-825. |
|