Int J Performability Eng ›› 2024, Vol. 20 ›› Issue (10): 602-609.doi: 10.23940/ijpe.24.10.p2.602609
• Original article • Previous Articles Next Articles
Singh Yogendra*(), Kumar Rishu, and Kabdal Soumya
Submitted on
;
Revised on
;
Accepted on
Contact:
Singh Yogendra
E-mail:2020002115.yogendra@ug.sharda.ac.in
About author:
E-mail address: 2020002115.yogendra@ug.sharda.ac.in
Singh Yogendra, Kumar Rishu, and Kabdal Soumya. Clipify: A Novel Approach to Summarize YouTube Video using LSA [J]. Int J Performability Eng, 2024, 20(10): 602-609.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Otani, M. , Nakashima, Y. , Rahtu, E. , Heikkilä, J . and Yokoya, N. , 2017. Video summarization using deep semantic features. In Computer Vision-ACCV 2016:13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part V 13 (pp. 361- 377). Springer International Publishing. |
[2] | Apostolidis, E. , Adamantidou, E. , Metsai, A.I. , Mezaris, V . and Patras, I. , 2021. Video summarization using deep neural networks: A survey. Proceedings of the IEEE, 109( 11), pp. 1838- 1863. |
[3] | Zhang, S. , Zhu, Y . and Roy-Chowdhury, A.K. , 2016. Context-aware surveillance video summarization. IEEE Transactions on Image Processing, 25( 11), pp. 5469- 5478. |
[4] | Kwon, J . and Lee, K.M., 2014. A unified framework for event summarization and rare event detection from multiple views. IEEE transactions on pattern analysis and machine intelligence, 37( 9), pp. 1737- 1750. |
[5] | Sridevi, M . and Kharde, M. , 2020. Video summarization using highlight detection and pairwise deep ranking model. Procedia Computer Science, 167, pp. 1839- 1848. |
[6] | Varini, P. , Serra, G . and Cucchiara, R. , 2017. Personalized egocentric video summarization of cultural tour on user preferences input. IEEE Transactions on Multimedia, 19( 12), pp. 2832- 2845. |
[7] | Ji, Z. , Xiong, K. , Pang, Y . and Li, X., 2019. Video summarization with attention-based encoder-decoder networks. IEEE Transactions on Circuits and Systems for Video Technology, 30( 6), pp. 1709- 1717. |
[8] | Fajtl, J. , Sokeh, H.S. , Argyriou, V. , Monekosso, D . and Remagnino, P. , 2019. Summarizing videos with attention. In Computer Vision-ACCV 2018 Workshops: 14th Asian Conference on Computer Vision, Perth, Australia, December 2-6, 2018, Revised Selected Papers 14 (pp. 39- 54). Springer International Publishing. |
[9] | Ngo, C.W. , Ma, Y.F. and Zhang, H.J. , 2005. Video summarization and scene detection by graph modeling. IEEE Transactions on circuits and systems for video technology, 15( 2), pp. 296- 305. |
[10] | Gupta, H . and Patel, M. , 2021, March. Method of text summarization using LSA and sentence based topic modelling with Bert. In 2021 international conference on artificial intelligence and smart systems (ICAIS) (pp . 511- 517). IEEE. |
[11] | Jugran, S. , Kumar, A. , Tyagi, B.S. and Anand, V. , 2021, March. Extractive automatic text summarization using SpaCy in Python & NLP. In 2021 International conference on advance computing and innovative technologies in engineering (ICACITE) (pp . 582- 585). IEEE. |
[12] | Adhikari, S. , 2020, March. Nlp based machine learning approaches for text summarization. In 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC) (pp . 535- 538). IEEE. |
[13] | Madhuri, J.N. and Kumar, R.G. , 2019, March. Extractive text summarization using sentence ranking. In 2019 international conference on data science and communication (IconDSC) (pp . 1- 3). IEEE. |
[14] | Merchant, K . and Pande, Y. , 2018, September. Nlp based latent semantic analysis for legal text summarization. In 2018 international conference on advances in computing, communications and informatics (ICACCI) (pp . 1803- 1807). IEEE. |
[15] | Gygli, M. , Grabner, H. , Riemenschneider, H . and Van Gool, L. , 2014. Creating summaries from user videos. In Computer Vision-ECCV 2014:13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13 (pp. 505- 520). Springer International Publishing. |
[16] | Apostolidis, E. , Adamantidou, E. , Metsai, A.I. , Mezaris, V . and Patras, I. , 2021. Video summarization using deep neural networks: A survey. Proceedings of the IEEE, 109( 11), pp. 1838- 1863. |
[17] | Dilawari, A . and Khan, M.U.G. , 2019. ASoVS: abstractive summarization of video sequences. IEEE Access, 7, pp. 29253- 29263. |
[18] | De Avila, S.E.F. , Lopes, A.P.B. , da Luz Jr, A . and de Albuquerque Araújo, A. , 2011. VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method. Pattern recognition letters, 32( 1), pp. 56- 68. |
[19] | Zhang, K. , Chao, W.L. , Sha, F . and Grauman, K. , 2016. Video summarization with long short-term memory. In Computer Vision-ECCV 2016:14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VII 14 (pp. 766- 782). Springer International Publishing. |
[20] | Mahasseni, B. , Lam, M . and Todorovic, S. , 2017. Unsupervised video summarization with adversarial lstm networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 202- 211). |
[21] | Rochan, M. , Ye, L . and Wang, Y. , 2018. Video summarization using fully convolutional sequence networks. In Proceedings of the European conference on computer vision (ECCV) (pp. 347- 363). |
[22] | Zhou, K. , Qiao, Y . and Xiang, T. , 2018, April. Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32 , No. 1). |
[23] | Song, Y. , Vallmitjana, J. , Stent, A . and Jaimes, A. , 2015. Tvsum: Summarizing web videos using titles. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5179- 5187). |
[24] | Gygli, M. , Grabner, H. , Riemenschneider, H . and Van Gool, L. , 2014. Creating summaries from user videos. In Computer Vision-ECCV 2014:13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13 (pp. 505- 520). Springer International Publishing. |
[25] | The Open Video Project. , accessed on October 1, 2024. |
[1] | Mansi Pandey, Chetan Sharma, Shamneesh Sharma, and Trapty Aggarwal. Hybrid Technique of Topic Modelling and Text Summarization: A Case Study on Predicting Trends in Green Computing [J]. Int J Performability Eng, 2024, 20(3): 139-148. |
[2] | Hannousse Abdelhakim and Talha Zied. A Hybrid Ensemble Learning Approach for Detecting Bots on Twitter [J]. Int J Performability Eng, 2024, 20(10): 610-620. |
[3] | Nidhi Mishra, Farhan Khan, and Amit Mishra. Revolutionizing Text Summarization: A Breakthrough in Content Compression [J]. Int J Performability Eng, 2024, 20(1): 40-47. |
[4] | Mahima Yadav and Ishan Kumar. Image Processing-Based Transliteration from Hindi to English [J]. Int J Performability Eng, 2023, 19(5): 334-341. |
[5] | Yogendra Singh, Rishu Kumar, Soumya Kabdal, and Prashant Upadhyay. YouTube Video Summarizer using NLP: A Review [J]. Int J Performability Eng, 2023, 19(12): 817-823. |
[6] | Rushali A. Deshmukh. Naive Bayes and Neural Network Techniques for Marathi Poem Classification into Nine Rasa using Feature Selection [J]. Int J Performability Eng, 2022, 18(9): 626-636. |
[7] | Poonam Narang, Ajay Vikram Singh, and Himanshu Monga. Hybrid Metaheuristic Approach for Detection of Fake News on Social Media [J]. Int J Performability Eng, 2022, 18(6): 434-443. |
[8] | Mamta Bhamare, and K Ashokkumar. Personality Prediction through Social Media Posts [J]. Int J Performability Eng, 2022, 18(11): 817-825. |
[9] | Jiafeng Zhou, Tian Liu, and Lin Zou. Design of Machine Learning Model for Urban Planning and Management Improvement [J]. Int J Performability Eng, 2020, 16(6): 958-967. |
[10] | Lele Chen, Song Huang, Jinlei Sun, Zhanwei Hui, and Sen Yang. Bug Report Classification based on Vector Space Model [J]. Int J Performability Eng, 2019, 15(8): 2071-2080. |
[11] | Chunxiang Zhang, Xuesong Zhou, Xueyao Gao, and Bo Yu. Word Sense Disambiguation based on Maximum Entropy Classifier [J]. Int J Performability Eng, 2019, 15(5): 1491-1498. |
[12] | Jiafeng Zhou, Tian Liu, and Lin Zou. Artificial Intelligence Approach to Creative Data Manipulation for Optimisation of Livelihood Oriented Urban Planning and Management [J]. Int J Performability Eng, 2019, 15(2): 602-610. |
[13] | Xian Zhang, Kerong Ben, and Jie Zeng. Using Cross-Entropy Value of Code for Better Defect Prediction [J]. Int J Performability Eng, 2018, 14(9): 2105-2115. |
|