Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (8): 695-702.doi: 10.23940/ijpe.21.08.p5.695702
Previous Articles Next Articles
Angel Arul Jothi Ja,* and Razia Sulthana Aa
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: angeljothi@dubai.bits-pilani.ac.in
Angel Arul Jothi J and Razia Sulthana A. A Review on the Literature of Fashion Recommender System using Deep Learning [J]. Int J Performability Eng, 2021, 17(8): 695-702.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Andreeva E., Ignatov D.I., Grachev A., andSavchenko A.V.Extraction of visual features for recommendation of products via deep learning. In 2. Shankar D., Narumanchi S., Ananya H.A., Kompalli P., andChaudhury K. Deep learning based large scale visual recommendation and search for e-commerce,2017, 3. de Barros Costa, E., Rocha, H.J.B., Silva, E.T., Lima, N.C., and Cavalcanti, J. Understanding and personalising clothing recommendation for women. In 4. Tuinhof H., Pirker C., andHaltmeier M.Image-based fashion product recommendation with deep learning. In 5. Yang Z., Su Z., Yang Y., andLin G.From recommendation to generation: A novel fashion clothing advising framework. In 6. Liu J., Song X., Chen Z., andMa J.Neural fashion experts: I know how to make the complementary clothing matching. 7. Zhou W., Mok P.Y., Zhou Y., Zhou Y., Shen J., Qu Q., andChau K.P.Fashion recommendations through cross-media information retrieval. 8. Su X., Gao M., Ren J., Li Y., andRätsch M.Personalized clothing recommendation based on user emotional analysis.Discrete Dynamics in Nature and Society, 2020. 9. Borji A.Pros and cons of gan evaluation measures. 10. Goodfellow I.,Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. 11. Liu L., Zhang H., Ji Y., andWu Q.J.Toward AI fashion design: An Attribute-GAN model for clothing match. 12. Kang W.C., Kim E., Leskovec J., Rosenberg C., andMcAuley, J. Complete the look: Scene-based complementary product recommendation. In 13. Yin R., Li K., Lu J., andZhang G.Enhancing fashion recommendation with visual compatibility relationship. In 14. Han X., Wu Z., Jiang Y.G., andDavis L.S.Learning fashion compatibility with bidirectional lstms. In 15. Heinz S., Bracher C., andVollgraf, R. An LSTM-based dynamic customer model for fashion recommendation,2017, 16. Jo S.Y., Jang S.H., Cho H.E., andJeong J.W.Scenery-based fashion recommendation with cross-domain geneartive adverserial networks. In 17. Guan C., Qin S., andLong Y.Apparel-based deep learning system design for apparel style recommendation.International Journal of Clothing Science and Technology, 2019. 18. Saga, R. and Duan, Y.Apparel Goods Recommender System Based on Image Shape Features Extracted by a CNN. In 19. Kumar, S. and Gupta, M.D. c+ GAN: Complementary Fashion Item Recommendation, 2019, 20. Huynh C.P., Ciptadi A., Tyagi A., andAgrawal, A. CRAFT: Complementary Recommendations Using Adversarial Feature Transformer,2018, 21. Xiao H., Rasul K., andVollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,2017, 22. Shih Y.S., Chang K.Y., Lin H.T., andSun M.Compatibility family learning for item recommendation and generation. In 23. Cucurull G., Taslakian P., andVazquez D.Context-aware visual compatibility prediction. In 24. He, R. and McAuley, J. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In 25. Zhang X., Jia J., Gao K., Zhang Y., Zhang D., Li J., andTian Q.Trip outfits advisor: Location-oriented clothing recommendation. 26. Sulthana, A.R. and Ramasamy, S.Ontology and context based recommendation system using neuro-fuzzy classification. 27. Mishra, R.K. and Urolagin, S.A Sentiment analysis-based hotel recommendation using TF-IDF Approach. In 28. Sulthana A.R., Gupta M., Subramanian S., andMirza S.Improvising the performance of image-based recommendation system using convolution neural networks and deep learning. 29. Jothi J.A.A. and Rajam, V.M.A. A survey on automated cancer diagnosis from histopathology images. 30. Mishra R.K., Urolagin S., andJothi J.A.A. Sentiment Analysis for POI Recommender Systems. In |
[1] | Ngan Tran, Haihua Chen, Janet Jiang, Jay Bhuyan, Junhua Ding. Effect of Class Imbalance on the Performance of Machine Learning-based Network Intrusion Detection [J]. Int J Performability Eng, 2021, 17(9): 741-755. |
[2] | F. Leo John, Jose Prabhu Joseph John. Randomly Selected Heterogenic Bagging with Cognitive Entity Metrics for Prediction of Heterogeneous Defects [J]. Int J Performability Eng, 2021, 17(9): 796-803. |
[3] | Himadri Sekhar Bhattacharyya, Sindhu Seethamraju, Amalendu Bikash Choudhury,chandan Kumar Chanda. State-of-Health Estimation and End of Life Prediction for the Lithium-Ion Battery by Correlatable Feature-based Machine Learning Approach [J]. Int J Performability Eng, 2021, 17(9): 825-836. |
[4] | Yi-Fan Chen, Yi-Kuei Lin, and Cheng-Fu Huang. Using Deep Neural Networks to Evaluate the System Reliability of Manufacturing Networks [J]. Int J Performability Eng, 2021, 17(7): 600-608. |
[5] | Sanjay Kumar Ahuja, Manoj Kumar Shukla, and Kiran Kumar Ravulakollu. Optimized Deep Learning Framework for Detecting Pitting Corrosion based on Image Segmentation [J]. Int J Performability Eng, 2021, 17(7): 627-637. |
[6] | Mohamed Amine Beghoura. Software Engineering Teamwork Data Understanding using an Embedded Feature Selection [J]. Int J Performability Eng, 2021, 17(5): 464-472. |
[7] | D. Laddha Manjushree, T. Lokare Varsha, W. Kiwelekar Arvind, and D. Netak Laxman. Performance Analysis of the Impact of Technical Skills on Employability [J]. Int J Performability Eng, 2021, 17(4): 371-378. |
[8] | Chhabra Megha, Shukla Manoj Kumar, and Ravulakolluc Kiran Kumar. Intelligent Optimization of Latent Fingerprint Image Segmentation using Stacked Convolutional Autoencoder [J]. Int J Performability Eng, 2021, 17(4): 379-393. |
[9] | J Akilandeswaria, G. Jothib, A Naveenkumara, R. S. Sabeenianc, P. Iyyanara, and M. E Paramasivamc . Detecting Pulmonary Embolism using Deep Neural Networks [J]. Int J Performability Eng, 2021, 17(3): 322-332. |
[10] | Naina Nisar, Nitin Rakesh, and Megha Chhabra. Review on Email Spam Filtering Techniques [J]. Int J Performability Eng, 2021, 17(2): 178-190. |
[11] | Apoorva Khairnar, Abhishek Patange, Sujit Pardeshi, and R. Jegadeeshwaran. Supervision of Carbide Tool Condition by Training of Vibration-based Statistical Model using Boosted Trees Ensemble [J]. Int J Performability Eng, 2021, 17(2): 229-240. |
[12] | Wei Feng and Yuqin Wu. DDoS Attack Real-Time Defense Mechanism using Deep Q-Learning Network [J]. Int J Performability Eng, 2020, 16(9): 1362-1373. |
[13] | Zhifeng Zhang, Xiao Cui, Pu Li, Jintao Jiang, and Xiaohui Ji. Hyperspectral Data Analysis based on Integrated Deep Learning [J]. Int J Performability Eng, 2020, 16(8): 1225-1234. |
[14] | Carl Wilhjelm, Taslima Kotadiya, and Awad A. Younis. Empirical Characterization of the Likelihood of Vulnerability Discovery [J]. Int J Performability Eng, 2020, 16(7): 1008-1018. |
[15] | Yuqing Qi, Wei Ren, Meiyu Shi, and Qinyun Liu. A Combinatorial Method based on Machine Learning Algorithms for Enhancing Cultural Economic Value [J]. Int J Performability Eng, 2020, 16(7): 1105-1117. |
|