[1] Xiao J., Li S., andXu Q., 2019. Video-based evidence analysis and extraction in digital forensic investigation.IEEE Access, 7, pp. 55432-55442. [2] Gilboa G., Sochen N., andZeevi Y.Y., 2004. Image enhancement and denoising by complex diffusion processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,26(8), pp. 1020-1036. [3] Sun D., Zhang X., Choo K.K.R., Hu L., andWang F., 2021. NLP-based digital forensic investigation platform for online communications.Computers & Security, 104, 102210. [4] Ryu J.H., Sharma P.K., Jo J.H., andPark J.H., 2019. A blockchain-based decentralized efficient investigation framework for IoT digital forensics. Journal of Supercomputing,75(8). [5] Horsman G.,2019. Formalising investigative decision making in digital forensics: proposing the digital evidence reporting and decision support (DERDS) framework.Digital Investigation, 28, pp. 146-151. [6] Al Mutawa N., Bryce J., Franqueira V.N., Marrington A., andRead J.C., 2019. Behavioural digital forensics model: embedding behavioural evidence analysis into the investigation of digital crimes.Digital Investigation, 28, pp. 70-82. [7] Kumar G., Saha R., Lal C., andConti M., 2021. Internet-of-forensic (IoF): A blockchain based digital forensics framework for IoT applications.Future Generation Computer Systems, 120, pp. 13-25. [8] Khan A.A., Uddin M., Shaikh A.A., Laghari A.A., andRajput A.E., 2021. MF-ledger: blockchain hyperledger sawtooth-enabled novel and secure multimedia chain of custody forensic investigation architecture.IEEE Access, 9, pp. 103637-103650. [9] Hemdan E.E.D., andManjaiah D.H., 2021. An efficient digital forensic model for cybercrimes investigation in cloud computing. Multimedia Tools and Applications,80(9), pp. 14255-14282. [10] Ferreira S., Antunes M., andCorreia M.E., 2021. A dataset of photos and videos for digital forensics analysis using machine learning processing.Data, 6(8), 87. [11] Fischinger, D. and Boyer, M., The Digital Forensics2023 dataset - DF2023, https://zenodo.org/records/7326540, accessed on October 1, 2025. [12] Rossler A., Cozzolino D., Verdoliva L., Riess C., Thies J., andNießner M., 2019. Faceforensics++: learning to detect manipulated facial images. InProceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1-11. [13] Frank J., andSchönherr L., 2021. Wavefake: A data set to facilitate audio deepfake detection.Arxiv Preprint Arxiv:2111.02813. [14] Mendeley Data, Forged Handwritten Document Database, https://data.mendeley.com/datasets/5bmyz97y7f/1, accessed on October 1, 2025. [15] Nirmal A., Jayaswal D., andKachare P.H., 2024. A hybrid bald eagle-crow search algorithm for gaussian mixture model optimisation in the speaker verification framework.Decision Analytics Journal, 10, 100385. [16] Halder R., andChatterjee R., 2020. CNN-BiLSTM model for violence detection in smart surveillance.SN Computer Science, 1(4), 201. [17] Park S., Yu S., Kim M., Park K., andPaik J., 2018. Dual autoencoder network for retinex-based low-light image enhancement.IEEE Access, 6, pp. 22084-22093. [18] Bayar B., andStamm M.C., 2017. Design principles of convolutional neural networks for multimedia forensics.Electronic Imaging, 29, pp. 77-86. [19] Ahmadianfar I., Bozorg-Haddad O., andChu X., 2020. Gradient-based optimizer: A new metaheuristic optimization algorithm.Information Sciences, 540, pp. 131-159. [20] Qazi E.U.H., Almorjan A., andZia T., 2022. A one-dimensional convolutional neural network (1D-CNN) based deep learning system for network intrusion detection.Applied Sciences, 12(16), 7986. |