Int J Performability Eng ›› 2019, Vol. 15 ›› Issue (1): 97-106.doi: 10.23940/ijpe.19.01.p10.97106
Previous Articles Next Articles
Yuan Chenab, Peng Zhangc, Kuiliang Xiad, and Hongzhong Huanga*()
Revised on
;
Accepted on
Contact:
Huang Hongzhong
E-mail:hzhuang@uestc.edu.cn
Yuan Chen, Peng Zhang, Kuiliang Xia, and Hongzhong Huang. Boundary Layers Defect Diagnosis and Analysis of Through Silicon Via(TSV) [J]. Int J Performability Eng, 2019, 15(1): 97-106.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Thickness data of the boundary layers of S3"
Point | Cu seed layer($\text{ }\!\!\mu\!\!\text{ m}$) | Parylene layer($\text{ }\!\!\mu\!\!\text{ m}$) | SiO2 layer($\text{ }\!\!\mu\!\!\text{ m}$) |
---|---|---|---|
Point 1 | 2.89 | 1.13 | 2.30 |
Point 2 | 2.34 | 0.99 | 1.94 |
Point 3 | 1.56 | 0.85 | 1.18 |
Point 4 | 1.27 | 1.02 | 1.00 |
Point 5 | 0.47 | 0.99 | 0.39 |
Point 6 | 0.68 | 0.97 | 0.33 |
Point 7 | 0.80 | 0.76 | 0.36 |
Point 8 | 0.71 | 0.86 | 0.42 |
Point 9 | 1.11 | 0.71 | 0.37 |
Point 10 | 0.38 | 1.17 | 0.52 |
Point 11 | 0.76 | 1.12 | 0.85 |
Point 12 | 0.77 | 1.33 | 1.20 |
Point 13 | 0.99 | 0.85 | 1.67 |
Point 14 | 1.85 | 1.09 | 2.06 |
Point 15 | 2.99 | 1.21 | 2.12 |
Average value | 1.30 | 1.00 | 1.11 |
Mean square error | 0.82 | 0.17 | 0.71 |
Table 2
Thickness data of the copper seed layer of different vias"
Via No. | S3 | S5 | S8 | C3 | C5 | C8 |
---|---|---|---|---|---|---|
Diameter/Side length($\text{ }\!\!\mu\!\!\text{ m}$) | 79.6 | 71.1 | 48.6 | 78.6 | 67.6 | 46.2 |
Depth($\text{ }\!\!\mu\!\!\text{ m}$) | 120.0 | 122.8 | 115.3 | 115.0 | 115.5 | 111.2 |
Aspect ratio | 1.5 | 1.7 | 2.3 | 1.5 | 1.7 | 2.4 |
Average value($\text{ }\!\!\mu\!\!\text{ m}$) | 1.31 | 1.26 | 1.07 | 1.12 | 1.07 | 0.98 |
Mean square error($\text{ }\!\!\mu\!\!\text{ m}$) | 0.823 | 0.855 | 0.870 | 0.823 | 0.945 | 0.995 |
[1] |
M. G. Farooq, T.L. Graves-Abe, W. F. Landers, C. Kothandaraman, B. A. Himmel, P. S. Andry , et al., “3D Copper TSV Integration, Testing and Reliability,” in Proceedings of International Electron Devices Meeting(IEDM), pp. 711-714, Washington, DC, USA, December 2011
doi: 10.1109/IEDM.2011.6131504 |
[2] | T. Fukushima, Y. Yamada, H. Kikuchi, M. Koyanagi , “New Three-Dimensional Integration Technology using Chip-to-Wafer Bonding to Achieve Ultimate Super-Chip Integration,” Japanese Journal of Applied Physics, Vol.45, No. 4B, pp. 3030-3035, 2006 |
[3] |
I. H. Jeong, M. H. Roh, F. Jung, W. H. Song, M. Mayer, J. P. Jung , “Analysis of the Electrical Characteristics and Structure of Cu-Filled TSV with Thermal Shock Test,” Electronic Materials Letters, Vol.10, No. 3, pp. 649-653, 2014
doi: 10.1007/s13391-013-3260-6 |
[4] |
P. Kumar, I. Dutta, M. S. Bakir , “Interfacial Effects During Thermal Cycling of Cu-Filled Through-Silicon Vias (TSV),” Journal of Electronic Materials, Vol.41, No. 2, pp. 322-335, 2012
doi: 10.1007/s11664-011-1726-6 |
[5] |
N. Ranganathan, D. Y. Lee, Y. Liu, G. Q. Lo, K. Prasad, K. L. Pey , “Influence of Bosch Etch Process on Electrical Isolation of TSV Structures,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol.1, No. 10, pp. 1497-1507, 2011
doi: 10.1109/TCPMT.2011.2160395 |
[6] |
R. P. Koseski, W. A. Osborn, S. J. Stranick, F.W. DelRio, M. D. Vaudin, T. Dao , et al., “Micro-Scale Measurement and Modeling of Stress in Silicon Surrounding a Tungsten-Filled Through-Silicon Via,” Journal of Applied Physics, Vol.110, pp. 073517, 2011
doi: 10.1063/1.3644971 |
[7] |
J.H. Lau and T. G. Yue, “Effects of TSVs (Through-Silicon Vias) on Thermal Performances of 3D IC Integration System-in-Package (SiP),” Microelectronics Reliability, No. 52, pp. 2660-2669, 2012
doi: 10.1016/j.microrel.2012.04.002 |
[8] |
O. Chukwudi, W. L. June, G. Fardad, H. Klaus, Y. S. Obeng , “A Detailed Failure Analysis Examination of the Effect of Thermal Cycling on Cu TSV Reliability,” IEEE Transactions on Electron Devices, Vol. 61, No. 1. pp. 15-22, January 2014
doi: 10.1109/TED.2013.2291297 |
[9] |
T. Frank, S. Moreau, C. Chappaz, P. Leduc, L. Arnaud, A. Thuaire , et al., “Reliability of TSV Interconnects: Electromigration, Thermal Cycling, and Impact on above Metal Level Dielectric,” Microelectronics Reliability, No. 53, pp. 17-29, 2013
doi: 10.1016/j.microrel.2012.06.021 |
[10] |
E. Beyne , “The 3-D Interconnect Technology Landscape,” IEEE Design Test, Vol. 33, No. 3, pp. 8-20, 2016
doi: 10.1109/MDAT.2016.2544837 |
[11] | Y. Zhao, S. Khursheed, B. M . Al-Hashimi, “Online Fault Tolerance Technique for TSV-Based 3-D-IC,” IEEE Transactions on Very Large Scale Integrated (VLSI) System, Vol. 23, No. 8, pp. 1567-1571, August 2015 |
[12] |
K. Croes, J. D. Messemaeker, Y. Li, W. Guo, O. Pedreira , “Reliability Challenges Related to TSV Integration and 3-D Stacking,” IEEE Design Test, Vol. 33, No. 3, pp. 37-45, 2015
doi: 10.1109/MDAT.2015.2501302 |
[13] |
J. M. Chan, C. S.T. Kheng, C. Lee, X. Cheng, and W. Kanert, “Reliability Evaluation of Copper (Cu) Through-Silicon Vias (TSV) Barrier and Dielectric Liner by Electrical Characterization and Physical Failure Analysis (PFA),” in Proceedings of 67th Electronic Components and Technology Conference, pp.73-79. Florida, USA, May 30-June 2, 2017
doi: 10.1109/ECTC.2017.77 |
[14] |
P. Coudrain, P. Souare, S. Dumas, C. Chancel, A. Farcy , “Experimental Insights into Thermal Dissipation in TSV-based 3-D Integrated Circuits,” IEEE Design Test, Vol. 33, No. 3, pp. 21-36, 2015
doi: 10.1109/MDAT.2015.2506678 |
[15] | M. J. Gaudestad, A. Orozco, I. D. Wolf, T. Wang, T. Weber , “Failure Analysis Work Flow for Electrical Shorts in Triple Stacked 3D TSV Daisy Chains,” in Proceedings of 40th International Symposium for Testing and Failure Analysis, pp. 38-42, Houston,USA, November 2014 |
[16] |
C. C. Lee, Y. M. Lin, C. P. Hsieh, Y. Y. Liou, C. J. Zhan, T. C. Chang , et al., “Assembly Technology Development and Failure Analysis for Three-Dimensional Integrated Circuit Integration with Ultra-Thin Chip Stacking,” Microelectronic Engineering, No. 156, pp. 24-29, 2016
doi: 10.1016/j.mee.2016.01.040 |
[17] |
C. Y. Liu, P. S. Kuo, C. H. Chu, A. Gu, J. Yoon , “High Resolution 3D X-Ray Microscopy for Streamlined Failure Analysis Workflow,” in Proceedings of 23rd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 216-219, Singapore, July 2016
doi: 10.1109/IPFA.2016.7564285 |
[18] |
G. Li, Z. Chen, S. Cao, H. Luo, L. I. Jiang, W. H. Zhu , “Failure Analysis on the Mechanical Property of Through-Silicon Vias Interface using a Cohesive Zone Model,” in Proceedings of 17th International Conference on Electronic Packaging Technology, pp. 1341-1345, Wuhan, China, August 2016
doi: 10.1109/ICEPT.2016.7583372 |
[19] |
M. Y. Mehr, A. Bahrami, H. Fischer, S. Gielen, R. Corbeij , “An Overview of Scanning Acoustic Microscope, a Reliable Method for Non-Destructive Failure Analysis of Microelectronic Components,” in Proceedings of 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, pp. 1-4, Budapest, Hungary, April 2015
doi: 10.1109/eurosime.2015.7103077 |
[20] |
V. N. Sekhar, S. Neo, L. H. Yu, A. D. Trigg, C. C. Kuo , “Non-Destructive Testing of a High Dense Small Dimension Through Silicon Via (TSV) Array Structures by using 3D X-Ray Computed Tomography Method (CT Scan),” in Proceedings of 12th IEEE Electronics Packaging Technology Conference (EPTC), pp. 462-466, Singapore, December 2010
doi: 10.1109/EPTC.2010.5702683 |
[21] |
F. X. Che, W. N. Putra, A. Heryanto , “Study on Cu Protrusion of Through-Silicon Via,” Components, Packaging and Manufacturing Technology, Vol.3, No. 5, pp. 732-739, 2013
doi: 10.1109/TCPMT.2013.2252955 |
[22] |
I. De Wolf, K. Croes, O. V. Pedreira, R. Labie, A. Redolfi, D. P.M. Van , et al., “Cu Pumping in TSVs: Effect of Pre-CMP Thermal Budget,” Microelectronics Reliability, Vol.51, No. 9, pp. 1856-1859, 2011
doi: 10.1016/j.microrel.2011.06.003 |
[23] |
J. D. Messemaeker, O. V. Pedreira, B. Vandevelde, H. Philipsen, I. De-Wolf, E. Beyne , et al., “Impact of Post-Plating Anneal and Through-Silicon Via Dimensions on Cu Pumping,” in Proceedings of 63rd Electronic Components and Technology Conference, pp. 586-591, Vegas, NV, USA , May 2013
doi: 10.1109/ECTC.2013.6575633 |
[24] | L. Huang, Q. Deng, M. Li, X. Feng, L. Gao , “A View on Annealing Behavior of Cu-Filled Through-Silicon Vias (TSV),” ECS Journal of Solid State Science and Technology, Vol.5, No. 7, pp. 389-392, 2016 |
[25] |
E.J. Cheng and Y. L. Shen, “Thermal Expansion Behavior of Through-Silicon-Via Structures in Three-Dimensional Microelectronic Packaging,” Microelectronics Reliability, Vol.52, No. 3, pp. 534-540, 2012
doi: 10.1016/j.microrel.2011.11.001 |
[1] | Naveen Monga and Parveen Sehgal. Effective Software Defect Prediction: Evaluating Classifiers and Feature Selection with Firefly Algorithm [J]. Int J Performability Eng, 2024, 20(4): 195-204. |
[2] | Manu Banga. An Intelligent Software System for Real Estate Systems using Machine Learning [J]. Int J Performability Eng, 2022, 18(6): 444-452. |
[3] | K. Eswara Rao, G. Appa Rao, and P. Sankara Rao. A Weighted Ada-Boosting Approach for Software Defect Prediction using Characterized Code Features Associated with Software Quality [J]. Int J Performability Eng, 2022, 18(11): 798-807. |
[4] | Mahesha Pandit, Deepali Gupta. Performance of Genetic Programming-based Software Defect Prediction Models [J]. Int J Performability Eng, 2021, 17(9): 787-795. |
[5] | F. Leo John, Jose Prabhu Joseph John. Randomly Selected Heterogenic Bagging with Cognitive Entity Metrics for Prediction of Heterogeneous Defects [J]. Int J Performability Eng, 2021, 17(9): 796-803. |
[6] | Guoqiang Xie, Shiyi Xie, Xiaohong Peng, and Zhao Li. Prediction of Number of Software Defects based on SMOTE [J]. Int J Performability Eng, 2021, 17(1): 123-134. |
[7] | Xue Bai, Hua Zhou, and Hongji Yang. An HVSM-based GRU Approach to Predict Cross-Version Software Defects [J]. Int J Performability Eng, 2020, 16(6): 979-990. |
[8] | Fang Li, Yubin Qu, Junxia Ji, Dejun Zhang, and Long Li. Active Learning Empirical Research on Cross-Version Software Defect Prediction Datasets [J]. Int J Performability Eng, 2020, 16(4): 609-617. |
[9] | Yubin Qu, Fang Li, and Xiang Chen. LAL: Meta-Active Learning-based Software Defect Prediction [J]. Int J Performability Eng, 2020, 16(2): 203-213. |
[10] | Xi Liu, Zhiyong Zhao, Haifeng Li, Chang Liu, and Shengli Wang. Defect Prediction of Radar System Software based on Bug Repositories and Behavior Models [J]. Int J Performability Eng, 2020, 16(2): 284-296. |
[11] | Xincheng Cao, Wanshan Liu, Bin Yao, Qixin Lan, Weifang Sun. Detection and Classification of Surface Defects of Magnetic Tile based on SE-U-Net [J]. Int J Performability Eng, 2020, 16(12): 1910-1920. |
[12] | Shibo Wang, Yong Li, Wenbo Mi and Ying Liu. Software Defect Prediction Incremental Model using Ensemble Learning [J]. Int J Performability Eng, 2020, 16(11): 1771-1780. |
[13] | Xiangyu Cheng, Yong Wang, Wan Zhou, Xue Wang and Jingming Wang. Software Fault Detection for Sequencing Constraint Defects [J]. Int J Performability Eng, 2020, 16(11): 1814-1825. |
[14] | Yunjie Lei, Ying Ma, Shunyi Chen, Yu Sun, and Keshou Wu. Fuzzy Multi-Attribute Decision Making for Software Defect Detection Model Evaluation [J]. Int J Performability Eng, 2020, 16(1): 78-86. |
[15] | Yong Li, Zhandong Liu, and Haijun Zhang. Using Evolutionary Process for Cross-Version Software Defect Prediction [J]. Int J Performability Eng, 2019, 15(9): 2484-2493. |
|