Int J Performability Eng ›› 2018, Vol. 14 ›› Issue (12): 3076-3086.doi: 10.23940/ijpe.18.12.p17.30763086
Previous Articles Next Articles
Bailin Wangab*(), Haifeng Wangab, and Tieke Liab
Revised on
;
Accepted on
Contact:
Wang Bailin
E-mail:wangbl@ustb.edu.cn
Bailin Wang, Haifeng Wang, and Tieke Li. Design of a Monitoring and Rescheduling System for Steelmaking-Continuous Casting Production [J]. Int J Performability Eng, 2018, 14(12): 3076-3086.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Class definitions in Workshop Module"
Class Name | Icon | Attributes |
---|---|---|
HEAT | ![]() | Temperature; Component; Weight; Steel-Grade; Fine-Upper (upper bound of refining time); Fine-Lower(lower bound of refining time) |
CONVERTER | ![]() | Pd-States (processing status of the converter) |
FINERY | ![]() | Pd-States (processing status of the finery furnace) |
CASTER | ![]() | Pd-States (processing status of the continuous caster); Casting-Speed |
Table 2
Correspondence between disturbances and rescheduling algorithms"
Disturbance | Algorithm |
---|---|
Time variation | Time Adjustment |
Machine fault | Duration <= Threshold (weak influence): Time Adjustment Duration > Threshold (serious influence): Machine Reassignment |
Quality fluctuation | Time Adjustment (Process parameters should be adjusted in advance) |
Table 3
Data of the original schedule"
Cast | Heat | Steelmaking | Refining | Casting | ||||||
---|---|---|---|---|---|---|---|---|---|---|
stij | ptij | Machine | stij | ptij | Machine | stij | ptij | Machine | ||
1 | 1 | 0 | 50 | Converter-1 | 50 | 45 | Finery-1 | 95 | 35 | Caster-1 |
2 | 30 | 50 | Converter-2 | 80 | 45 | Finery-2 | 130 | 35 | Caster-1 | |
3 | 50 | 50 | Converter-1 | 100 | 45 | Finery-1 | 165 | 35 | Caster-1 | |
4 | 75 | 50 | Converter-3 | 145 | 45 | Finery-1 | 200 | 35 | Caster-1 | |
5 | 125 | 50 | Converter-3 | 190 | 45 | Finery-1 | 235 | 35 | Caster-1 | |
6 | 175 | 50 | Converter-3 | 225 | 45 | Finery-3 | 270 | 35 | Caster-1 | |
2 | 7 | 30 | 45 | Converter-3 | 100 | 40 | Finery-3 | 140 | 35 | Caster-2 |
8 | 80 | 45 | Converter-2 | 125 | 40 | Finery-2 | 175 | 35 | Caster-2 | |
9 | 115 | 45 | Converter-1 | 165 | 40 | Finery-2 | 210 | 35 | Caster-2 | |
10 | 160 | 45 | Converter-2 | 205 | 40 | Finery-2 | 245 | 35 | Caster-2 | |
11 | 215 | 35 | Converter-2 | 250 | 30 | Finery-2 | 280 | 40 | Caster-2 | |
12 | 255 | 35 | Converter-1 | 190 | 30 | Finery-1 | 320 | 40 | Caster-2 | |
3 | 13 | 125 | 35 | Converter-2 | 160 | 30 | Finery-3 | 190 | 40 | Caster-3 |
14 | 160 | 35 | Converter-1 | 195 | 30 | Finery-3 | 230 | 40 | Caster-3 | |
15 | 205 | 35 | Converter-1 | 240 | 30 | Finery-1 | 270 | 40 | Caster-3 | |
16 | 225 | 45 | Converter-3 | 270 | 40 | Finery-3 | 310 | 30 | Caster-3 | |
17 | 255 | 45 | Converter-2 | 300 | 40 | Finery-2 | 340 | 30 | Caster-3 | |
18 | 285 | 45 | Converter-3 | 330 | 40 | Finery-3 | 370 | 30 | Caster-3 |
Table 4
Rescheduling data for the disturbance of processing time extension"
Uncompleted Oij (33) | Succeed Oij (19) | Rescheduling results |
---|---|---|
O72, O13,2, O14,2O62, O16,2, O18,2, O73, O83, O93, O10,3, O11,3, O12,3, O13,3, O14,3, O15,3, O16,3, O17,3, O18,3, O63, O32, O42, O52, O15,2, O12,2, O82, O92, O10,2, O11,2, O17,2, O23, O33, O43, O53 | O72, O13,2, O14,2O62, O16,2, O18,2, O73, O83, O93, O10,3, O11,3, O12,3, O13,3, O14,3, O15,3, O16,3, O17,3, O18,3, O63 | O72:pt72=55;O73:st73=155; O83:st83=l90;O93:st932=225; O10,3:st10,3=260;O11,3:st11,3=295; O12,3:st12,3=335 |
Table 5
Rescheduling results for the disturbance of machine breakdown"
Machine | Converter#1 for O13,1 |
---|---|
st | $s{{t}_{13,1}}=160$; $s{{t}_{14,1}}=195$; $s{{t}_{15,1}}=230$; $s{{t}_{62}}=255$; $s{{t}_{13,2}}=195$; $s{{t}_{14,2}}=230$; $s{{t}_{15,2}}=265$; $s{{t}_{23}}=131$; $s{{t}_{33}}=167$; $s{{t}_{43}}=203$; $s{{t}_{53}}=239$; $s{{t}_{62}}=275$; $s{{t}_{13,3}}=225$; $s{{t}_{14,3}}=265$; $s{{t}_{15,3}}=305$; $s{{t}_{16,3}}=345$; $s{{t}_{17,3}}=375$; $s{{t}_{18,3}}=405$ |
pt | $p{{t}_{62}}=20$; $p{{t}_{13}}=p{{t}_{23}}=p{{t}_{33}}=p{{t}_{43}}=p{{t}_{53}}=36$ |
[1] |
S. Jiang, M. Liu, J. Hao, W. Qian , “A Bi-Layer Optimization Approach for a Hybrid Flow Shop Scheduling Problem Involving Controllable Processing Times in the Steelmaking Industry,” Computers & Industrial Engineering, Vol. 87, pp. 518-531, 2015
doi: 10.1016/j.cie.2015.06.002 |
[2] |
K. Mao, Q.K. Pan, X. Pang, T. Chai , “A Novel Lagrangian Relaxation Approach for a Hybrid Flowshop Scheduling Problem in the Steelmaking-Continuous Casting Process,” European Journal of Operational Research, Vol. 236, No. 1, pp. 51-60, 2014
doi: 10.1016/j.ejor.2013.11.010 |
[3] |
Y. Tan and S. Liu, “Models and Optimization Approaches for Scheduling Steelmaking-Refining-Continuous Casting Production Under Variable Electricity Price,” International Journal of Production Research, Vol.52, No. 4, pp. 1032-1049, 2014
doi: 10.1080/00207543.2013.828179 |
[4] | C. Zhang, T. Li, B. Wang, W. Zhang, B. Sun , “Dynamic Modeling Method for the Scheduling Problem in Steelmaking-Continuous Casting with Disturbance of Product Quality,” Energy Procedia, Vol. 13, pp. 253-261, 2011 |
[5] |
S. Yu and Q. Pan, “A Rescheduling Method for Operation Time Delay Disturbance in Steelmaking and Continuous Casting Production Process,” International Journal of Iron and Steel Research, Vol. 19, No. 12, pp. 33-41, 2012
doi: 10.1016/S1006-706X(13)60029-1 |
[6] |
K. Mao, Q.K. Pan, X. Pang, T. Chai , “An Effective Lagrangian Relaxation Approach for Rescheduling a Steelmaking-Continuous Casting Process,” Control Engineering Practice, Vol. 30, pp. 67-77, 2014
doi: 10.1016/j.conengprac.2014.06.003 |
[7] |
D. Ouelhadj, P. Cowling, S. Petrovic , “Utility and Stability Measures for Agent-based Dynamic Scheduling of Steel Continuous Casting,” in Proceedings of IEEE International Conference on Robotics and Automation, Taiwan, China, 2003
doi: 10.1109/ROBOT.2003.1241592 |
[8] |
D.L. Hou and T. K. Li, “Analysis of Random Disturbances on Shop Floor in Modern Steel Production Dynamic Environment,” Procedia Engineering, Vol. 29, No. 4, pp. 663-667, 2012
doi: 10.1016/j.proeng.2012.01.020 |
[9] |
K. Chen, Z. Zheng, Y. Liu, X. Gao , “Real-Time Scheduling Method for Steelmaking-Continuous Casting,” in Proceedings of the 2010 IEEE IEEM, Macau, China, 2010
doi: 10.1109/IEEM.2010.5674363 |
[10] |
L. Tang, Y. Zhao, J. Liu , “An Improved Differential Evolution Algorithm for Practical Dynamic Scheduling in Steelmaking-Continuous Casting Production,” IEEE Transactions on Evolutionary Computation, Vol. 18, No. 2, pp. 209-225, 2014
doi: 10.1109/TEVC.2013.2250977 |
[11] |
J. Hao, M. Liu, S. Jiang, C. Wu , “A Soft-Decision based Two-Layered Scheduling Approach for Uncertain Steelmaking-Continuous Casting Process,” European Journal of Operational Research, Vol. 244, No. 3, pp. 966-979, 2015
doi: 10.1016/j.ejor.2015.02.026 |
[12] |
Z. Zhong, J. Y. Long, X. Q. Gao . “Production Scheduling Problems of Steelmaking-Continuous Casting Process in Dynamic Production Environment,” Journal of Iron and Steel Research (International), Vol. 24, No. 6, pp. 586-594, 2017
doi: 10.1016/S1006-706X(17)30089-4 |
[13] | Gensym Corporation , “G2 Application Development 1 Overhead Manual (Version 7.0 Rev. 0),” Gensym Corporation, USA, 2003 |
[14] |
L. Yao, I. Postlethwaite, W. Browne, D. Gu, M. Mar, S. Lowes , “Design, Implementation and Testing of an Intelligent Knowledge-based System for the Supervisory Control of a Hot Rolling Mill,” Journal of Process Control, Vol. 15, No. 6, pp. 615-628, 2005
doi: 10.1016/j.jprocont.2005.03.003 |
[15] | D. Guo and T. Li, “Constraint Satisfaction-based Method for Steelmaking- Continuous Casting Production Scheduling Problem,” Information and Control, Vol. 34, No. 6, pp. 753-758, 2005 |
[1] | Kalyani H. Deshmukh, Gajendra R. Bamnote, and Pratik K Agrawal. A Novel Approach for Drought Monitoring and Evaluation using Time Series Analysis and Deep Learning [J]. Int J Performability Eng, 2024, 20(8): 498-509. |
[2] | Chia-En Lai and Chin-Yu Huang. Developing a Modified Fuzzy-GE Algorithm for Enhanced Test Suite Reduction Effectiveness [J]. Int J Performability Eng, 2023, 19(4): 223-233. |
[3] | Keshav H. Jatakar, Gopal Mulgund, Abhishek D. Patange, B. B. Deshmukh, and Kishor S. Rambhad. Multi-Point Face Milling Tool Condition Monitoring Through Vibration Spectrogram and LSTM-Autoencoder [J]. Int J Performability Eng, 2022, 18(8): 570-579. |
[4] | Amit Sundas, and Sumit Badotra. Comprehensive Study of Machine Learning-Based Systems for Early Warning of Clinical Deterioration [J]. Int J Performability Eng, 2022, 18(12): 893-902. |
[5] | Revati M. Wahul, Archana P. Kale, and Abhishek D. Patange. Health Monitoring of Turning Tool through Vibration Signals Processed using Convolutional Neural Network Architecture [J]. Int J Performability Eng, 2022, 18(10): 730-740. |
[6] | Sonali S. Patil, Sujit S. Pardeshi, Nikhil Pradhan, and Abhishek D. Patange. Cutting Tool Condition Monitoring using a Deep Learning-based Artificial Neural Network [J]. Int J Performability Eng, 2022, 18(1): 37-46. |
[7] | Jingyuan Liu, Xu Yang, Jingang Guo, Da Wang, and Hai Zhao. Monitoring Technology of Energy Storage Power Stations based on Discharge Control Scheduling Algorithm [J]. Int J Performability Eng, 2021, 17(1): 95-102. |
[8] | Murgayya S B, Suresh H N, Madhusudhan N, and Saravanabavan D. Optimization of High Speed Rotor-Bearings System to Assess the Reliability using XLrotor [J]. Int J Performability Eng, 2020, 16(7): 991-998. |
[9] | Kumar Jalan Arun, Patil Shital, and Mittal Gaurav. A Review on Fault Diagnosis of Misaligned Rotor Systems [J]. Int J Performability Eng, 2020, 16(4): 499-509. |
[10] | Han Xu, William Cheng Chung Chu, and Jie Luo. Application of Ontology and Multivariate Decision Diagram in Cloud Monitor Systems [J]. Int J Performability Eng, 2019, 15(12): 3227-3236. |
[11] | Zhihui Zhuang, Jian Cen, and Shuai Liu. Control Method of Multi-Split Wireless Remote Monitoring System [J]. Int J Performability Eng, 2019, 15(12): 3279-3286. |
[12] | Xiao Heng and Gautam Srivastava. Dynamic Monitoring Method of Coconut Red Ring Disease based on Apriori Algorithm [J]. Int J Performability Eng, 2019, 15(12): 3322-3331. |
[13] | Shaohua Yang, Guoliang Lu, Aiqun Wang, and Peng Yan. High-Level Feature Extraction based on Correlogram for State Monitoring of Rotating Machinery with Vibration Signals [J]. Int J Performability Eng, 2019, 15(1): 220-229. |
|