[1] Allcott H., andGentzkow M., 2017. Social media and fake news in the 2016 election. Journal of Economic Perspectives,31(2), pp. 211-236. [2] Ajao O., Bhowmik D., andZargari S., 2018. Fake news identification on Twitter with hybrid cnn and rnn models. InProceedings of the 9th International Conference on Social Media and Society, pp. 226-230. [3] Lazer D.M., Baum M.A., Benkler Y., Berinsky A.J., Greenhill K.M., Menczer F., Metzger M.J., Nyhan B., Pennycook G., Rothschild D., andSchudson M., 2018. The science of fake news. Science,359(6380), pp. 1094-1096. [4] Zhou X., andZafarani R., 2020. A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Computing Surveys (CSUR),53(5), pp. 1-40. [5] Klein D.O., andWueller J.R., 2018. Fake news: A legal perspective. Australasian Policing,10(2), pp. 11-17. [6] Kouzy R., Abi Jaoude J., Kraitem A., El Alam M.B., Karam B., Adib E., Zarka J., Traboulsi C., Akl E.W., andBaddour K., 2020. Coronavirus goes viral: quantifying the COVID-19 misinformation epidemic on Twitter. Cureus,12(3). [7] Shu K., Wang S., Lee D., andLiu H., 2020. Mining disinformation and fake news: concepts, methods, and recent advancements. InDisinformation, Misinformation, and Fake News in Social Media: Emerging Research Challenges and Opportunities, pp. 1-19. [8] Sharma D.K., andSharma S., 2021. Comment filtering based explainable fake news detection. InProceedings of Second International Conference on Computing, Communications, and Cyber-Security: IC4S 2020, pp. 447-458. [9] Garg S., andSharma D.K., 2020. Phony news detection using machine learning and deep-learning techniques. In2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), pp. 27-32. [10] Karimi H., Roy P., Saba-Sadiya S., andTang J., 2018. Multi-source multi-class fake news detection. InProceedings of the 27th International Conference on Computational Linguistics, pp. 1546-1557. [11] Oshikawa R., Qian J., andWang W.Y., 2020. A survey on natural language processing for fake news detection. InProceedings of the Twelfth Language Resources and Evaluation Conference, pp. 6086-6093. [12] Liu, Y. and Wu, Y.F., 2018, April. Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. In Proceedings of the AAAI conference on artificial intelligence,32(1). [13] Liu Q., Yu F., Wu S., andWang L., 2018. Mining significant microblogs for misinformation identification: an attention-based approach. ACM Transactions on Intelligent Systems and Technology (TIST),9(5), pp. 1-20. [14] Zhang T., Wang D., Chen H., Zeng Z., Guo W., Miao C., andCui L., 2020. BDANN: Bert-based domain adaptation neural network for multi-modal fake news detection. In2020 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. [15] Devlin J., Chang M.W., Lee K., andToutanova K., 2019. Bert: pre-training of deep bidirectional transformers for language understanding. InProceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186. [16] Tariq A., Mehmood A., Elhadef M., andKhan M.U.G., 2022. Adversarial training for fake news classification.IEEE Access, 10, pp. 82706-82715. [17] Whitehouse C., Weyde T., Madhyastha P., andKomninos N., 2022. Evaluation of fake news detection with knowledge-enhanced language models. InProceedings of the International AAAI Conference on Web and Social Media, 16, pp. 1425-1429. [18] Pavlyshenko B.M.,2023. Analysis of disinformation and fake news detection using fine-tuned large language model.Arxiv Preprint Arxiv:2309.04704. [19] Hu B., Sheng Q., Cao J., Shi Y., Li Y., Wang D., andQi P., 2024. Bad actor, good advisor: exploring the role of large language models in fake news detection. In Proceedings of the AAAI Conference on Artificial Intelligence,38(20), pp. 22105-22113. [20] Aman M.,2024. Large language model based fake news detection.Procedia Computer Science, 231, pp. 740-745. [21] Ahmed H., Traore I., andSaad S., 2018. Detecting opinion spams and fake news using text classification.Security and Privacy, 1(1), e9. [22] Sharma S., Saraswat M., andDubey A.K., 2021. Fake news detection using deep learning. InIberoamerican Knowledge Graphs and Semantic Web Conference, pp. 249-259. [23] Hamborg F., Donnay K., andGipp B., 2019. Automated identification of media bias in news articles: an interdisciplinary literature review. International Journal on Digital Libraries,20(4), pp. 391-415. [24] Chien S.Y., Yang C.J., andYu F., 2022. XFlag: explainable fake news detection model on social media. International Journal of Human-Computer Interaction,38(18-20), pp. 1808-1827. [25] Palani B., Elango S., andViswanathan K V., 2022. CB-fake: A multimodal deep learning framework for automatic fake news detection using capsule neural network and Bert. Multimedia Tools and Applications,81(4), pp. 5587-5620. |