[1] Forland M.K., Kralevska K., Garau M., andGligoroski D., 2019. Preventing DDoS with SDN in 5G. In2019 IEEE Globecom Workshops (GC Workshops), pp. 1-7. [2] Amaizu G.C., Nwakanma C.I., Bhardwaj S., Lee J.M., andKim D.S., 2021. Composite and efficient DDoS attack detection framework for B5G networks.Computer Networks, 188, 107871. [3] Arshi M., Nasreen M.D., andMadhavi K., 2020. A survey of DDoS attacks using machine learning techniques. InE3S Web of Conferences, 184, pp. 01052. [4] Radanliev P., De Roure D.C., Nicolescu R., Huth M., Montalvo R.M., Cannady S., andBurnap P., 2018. Future developments in cyber risk assessment for the internet of things.Computers in Industry, 102, pp. 14-22. [5] Mamolar A.S., Pervez Z., Wang Q., andAlcaraz-Calero J.M., 2019. Towards the detection of mobile DDoS attacks in 5g multi-tenant networks. In2019 European Conference on Networks and Communications (EuCNC), pp. 273-277. [6] Zhang C., Ueng Y.L., Studer C., andBurg A., 2020. Artificial intelligence for 5G and beyond 5G: implementations, algorithms, and optimizations. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,10(2), pp. 145-148. [7] Hong K., Kim Y., Choi H., andPark J., 2017. SDN-assisted slow HTTP DDoS attack defense method. IEEE Communications Letters,22(4), pp. 688-691. [8] Abou El Houda Z., Hafid A.S., andKhoukhi L., 2019. Cochain-SC: an intra-and inter-domain DDoS mitigation scheme based on blockchain using SDN and smart contract.IEEE Access, 7, pp. 98893-98907. [9] Zhou L., Sood K., andXiang Y., 2019. ERM: an accurate approach to detect DDoS attacks using entropy rate measurement. IEEE Communications Letters,23(10), pp. 1700-1703. [10] Somani G., Gaur M.S., Sanghi D., Conti M., andRajarajan M., 2017. Scale inside-out: rapid mitigation of cloud DDoS attacks. IEEE Transactions on Dependable and Secure Computing,15(6), pp. 959-973. [11] Lilhore U.K., Dalal S., andSimaiya S., 2024. A cognitive security framework for detecting intrusions in IoT and 5G utilizing deep learning.Computers & Security, 136, 103560. [12] Ji S., andMishra A.K., 2024. 5g security issues challenges and solutions against DDoS attacks: A survey. In2024 2nd International Conference on Disruptive Technologies (ICDT), pp. 1422-1427. [13] Ji S., andMishra A.K., 2024. 5g network implementation: A survey on security issues, challenges, and future directions. InDevelopments Towards Next Generation Intelligent Systems for Sustainable Development, pp. 62-88. [14] Musa M.O., andOdokuma E.E., 2023. A framework for the detection of distributed denial of service attacks on network logs using ML and DL classifiers. Scientia Africana,22(3), pp. 153-164. [15] Yan Q., Huang W., Luo X., Gong Q., andYu F.R., 2018. A multi-level DDoS mitigation framework for the industrial internet of things. IEEE Communications Magazine,56(2), pp. 30-36. [16] Almiani M., AbuGhazleh A., Jararweh Y., andRazaque A., 2021. DDoS detection in 5G-enabled IoT networks using deep kalman backpropagation neural network. International Journal of Machine Learning and Cybernetics,12(11), pp. 3337-3349. [17] Kim Y.E., Kim Y.S., andKim H., 2022. Effective feature selection methods to detect IoT DDoS attack in 5G core network.Sensors, 22(10), 3819. [18] Sharafaldin I., Lashkari A.H., Hakak S., andGhorbani A.A., 2019. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy. In2019 International Carnahan Conference on Security Technology (ICCST), pp. 1-8. [19] Yuan X., Li C., andLi X., 2017. DeepDefense: identifying DDoS attack via deep learning. In2017 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1-8. |