[1] Wu Y., Li Z., Wu W., and Zhou M., 2018. Response selection with topic clues for retrieval-based chatbots.Neurocomputing, 316, pp. 251-261. [2] Wu Y., Wu W., Xing C., Zhou M., and Li Z., 2016. Sequential matching network: A new architecture for multi-turn response selection in retrieval-based chatbots.Arxiv Preprint Arxiv:1612.01627. [3] Zhang Z., Li J., Zhu P., Zhao H., and Liu G., 2018. Modeling multi-turn conversation with deep utterance aggregation.Arxiv Preprint Arxiv:1806.09102. [4] Hu B., Lu Z., Li H., and Chen Q., 2014. Convolutional neural network architectures for matching natural language sentences.Advances in Neural Information Processing Systems, 27. [5] Yan Z., Duan N., Bao J., Chen P., Zhou M., and Li Z., 2018. Response selection from unstructured documents for human-computer conversation systems.Knowledge-Based Systems, 142, pp. 149-159. [6] Lowe R., Pow N., Serban I., and Pineau J., 2015. The ubuntu dialogue corpus: A large dataset for research in unstructured multi-turn dialogue systems.Arxiv Preprint Arxiv:1506.08909. [7] Tay Y., Tuan L.A., and Hui S.C., 2018. Co-stack residual affinity networks with multi-level attention refinement for matching text sequences.Arxiv Preprint Arxiv:1810.02938. [8] Chen Q., and Wang W., 2019. Sequential matching model for end-to-end multi-turn response selection. InICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7350-7354. [9] Yuan C., Zhou W., Li M., Lv S., Zhu F., Han J., and Hu S., 2019. Multi-hop selector network for multi-turn response selection in retrieval-based chatbots. InProceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 111-120. [10] Yan R., Song Y., and Wu H., 2016. Learning to respond with deep neural networks for retrieval-based human-computer conversation system. InProceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 55-64. [11] Humeau S., Shuster K., Lachaux M.A., and Weston J., 2019. Poly-encoders: transformer architectures and pre-training strategies for fast and accurate multi-sentence scoring.Arxiv Preprint Arxiv:1905.01969. [12] Xu Y., Zhao H., and Zhang Z., 2021. Topic-aware multi-turn dialogue modeling. In Proceedings of the AAAI Conference on Artificial Intelligence,35(16), pp. 14176-14184. [13] Zhou X., Li L., Dong D., Liu Y., Chen Y., Zhao W.X., Yu D., and Wu H., 2018. Multi-turn response selection for chatbots with deep attention matching network. InProceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 1, pp. 1118-1127. [14] Tao C., Wu W., Xu C., Hu W., Zhao D., and Yan R., 2019. One time of interaction may not be enough: go deep with an interaction-over-interaction network for response selection in dialogues. InProceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1-11. [15] Tao C., Wu W., Xu C., Hu W., Zhao D., and Yan R., 2019. Multi-representation fusion network for multi-turn response selection in retrieval-based chatbots. InProceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 267-275. [16] Hotelling H.,1992. Relations between two sets of variates. InBreakthroughs in Statistics: Methodology and Distribution, pp. 162-190. [17] Vinyals O., and Le Q., 2015. A neural conversational model.Arxiv Preprint Arxiv:1506.05869. [18] Sordoni A., Galley M., Auli M., Brockett C., Ji Y., Mitchell M., Nie J.Y., Gao J., and Dolan B., 2015. A neural network approach to context-sensitive generation of conversational responses.Arxiv Preprint Arxiv:1506.06714. [19] Serban I., Sordoni A., Bengio Y., Courville A., and Pineau J., 2016. Building end-to-end dialogue systems using generative hierarchical neural network models. In Proceedings of the AAAI Conference on Artificial Intelligence,30(1). [20] Li J., Monroe W., Ritter A., Galley M., Gao J., and Jurafsky D., 2016. Deep reinforcement learning for dialogue generation.Arxiv Preprint Arxiv:1606.01541. [21] Wen T.H., Vand yke D., Mrksic N., Gasic M., Rojas-Barahona L.M., Su P.H., Ultes S., and Young S., 2016. A network-based end-to-end trainable task-oriented dialogue system.Arxiv Preprint Arxiv:1604.04562. [22] Zhang Y., Galley M., Gao J., Gan Z., Li X., Brockett C., and Dolan B., 2018. Generating informative and diverse conversational responses via adversarial information maximization.Advances in Neural Information Processing Systems, 31. [23] Yang L., Qiu M., Qu C., Guo J., Zhang Y., Croft W.B., Huang J., and Chen H., 2018. Response ranking with deep matching networks and external knowledge in information-seeking conversation systems. Inthe 41st International ACM Sigir Conference on Research & Development in Information Retrieval, pp. 245-254. [24] Asher N., Hunter J., Morey M., Benamara F., and Afantenos S., 2016. Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus. In10th International Conference on Language Resources and Evaluation (LREC 2016), pp. 2721-2727. [25] Asher N., and Lascarides A., 2003. Logics of Conversation. Cambridge University Press. [26] Li J., Liu M., Kan M.Y., Zheng Z., Wang Z., Lei W., Liu T., and Qin B., 2020. Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure.Arxiv Preprint Arxiv:2004.05080. [27] Shi Z., and Huang M., 2019. A deep sequential model for discourse parsing on multi-party dialogues. In Proceedings of the AAAI Conference on Artificial Intelligence,33(01), pp. 7007-7014. [28] Majumder B.P., Li S., Ni J., and McAuley J., 2020. Interview: large-scale modeling of media dialog with discourse patterns and knowledge grounding. InProceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8129-8141. [29] Gu X., Yoo K.M., and Ha J.W., 2021. Dialogbert: discourse-aware response generation via learning to recover and rank utterances. In Proceedings of the AAAI Conference on Artificial Intelligence,35(14), pp. 12911-12919. [30] Santra B., Roychowdhury S., Mand al A., Gurram V., Naik A., Gupta M., and Goyal P., 2021. Representation learning for conversational data using discourse mutual information maximization.Arxiv Preprint Arxiv:2112.05787. [31] Wu Y., Wu W., Xu C., and Li Z., 2018. Knowledge enhanced hybrid neural network for text matching. In Proceedings of the AAAI Conference on Artificial Intelligence,32(1). [32] Zhou X., Dong D., Wu H., Zhao S., Yu D., Tian H., Liu X., and Yan R., 2016. Multi-view response selection for human-computer conversation. InProceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 372-381. [33] Bach F.R., and Jordan M.I., 2005. A probabilistic interpretation of canonical correlation analysis. [34] Foster D.P., Kakade S.M., and Zhang T., 2008. Multi-view dimensionality reduction via canonical correlation analysis.Toyota Technical Institute-Chicago. [35] Mehndiratta A., and Asawa K., 2024. Suitability of CCA for generating latent state/variables in multi-view textual data.Arxiv Preprint Arxiv:2406.12997. [36] Li J., Galley M., Brockett C., Gao J., and Dolan B., 2015. A diversity-promoting objective function for neural conversation models.Arxiv Preprint Arxiv:1510.03055. |