Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (8): 703-710.doi: 10.23940/ijpe.21.08.p6.703710
Previous Articles Next Articles
S.P. Shantharajah and E. Maruthavani
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: shantharajah.sp@vit.ac.in
S.P. Shantharajah and E. Maruthavani. A Survey on Challenges in Transforming No-SQL Data to SQL Data and Storing in Cloud Storage based on User Requirement [J]. Int J Performability Eng, 2021, 17(8): 703-710.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Habeeb R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E., and Imran, M. Real-time big data processing for anomaly detection: A survey. 2. Martinez-Mosquera, D., Navarrete, R., and Lujan-Mora, S. Modeling and management big data in databases-A systematic literature review. 3. Taipalus, T. and Seppänen, V.SQL education: a systematic mapping study and future research agenda. 4. Shewach O.R., Sackett P.R., andQuint S.Stereotype threat effects in settings with features likely versus unlikely in operational test settings: A meta-analysis. 5. Allen C.M., Joshi M.C., Gosala D.B., Shaver G.M., Farrell L., andMcCarthy, J. Experimental assessment of diesel engine cylinder deactivation performance during low-load transient operations. 6. Choi, W.G. and Park, S.A write-friendly approach to manage namespace of Hadoop distributed file system by utilizing nonvolatile memory. 7. Jeyaraj R., Pugalendhi G., andPaul A.Big Data with Hadoop MapReduce: A Classroom Approach. Apple Academic Press, 2020. 8. Huang W., Wang H., Zhang Y., and Zhang S.A novel cluster computing technique based on signal clustering and analytic hierarchy model using hadoop. 9. González-Domínguez, J., Bolón-Canedo, V., Freire, B., and Touriño, J. Parallel feature selection for distributed-memory clusters. 10. Thusoo A., Sarma J.S., Jain N., Shao Z., Chakka P., Anthony S., Liu H., Wyckoff P., andMurthy R.Hive: a warehousing solution over a map-reduce framework. 11. Mavridis, I. and Karatza, H.Performance evaluation of cloud-based log file analysis with Apache Hadoop and Apache Spark. 12. Hashem I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., and Khan, S.U. The rise of “big data” on cloud computing: Review and open research issues. 13. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., and Lee, W. Virtuoso: Narrowing the semantic gap in virtual machine introspection. In 14. McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J., and Barton, D. Big data: the management revolution. 15. Mueller F.Data extraction engine for structured, semi-structured and unstructured data with automated labeling and classification of data patterns or data elements therein, and corresponding method thereof. 16. Schulzrinne H.World Wide Web: whence, whither, what next? 17. Gao Z., Min H., Li X., Huang J., Jin Y., Lei A., Bourbonnais S., Zheng M., andFuh G.Optimizing Inter-data-center Large-Scale Database Parallel Replication with Workload-Driven Partitioning. In 18. Cattell R.Scalable SQL and NoSQL data stores. 19. Schafer, J.L. and Olsen, M.K.Multiple imputation for multivariate missing-data problems: A data analyst's perspective. 20. Karim M.R.Java Deep Learning Projects: Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs. Packt Publishing Ltd, 2018. 21. Tian X., Han R., Wang L., Lu G., andZhan J.Latency critical big data computing in finance. 22. Pavlo A., Paulson E., Rasin A., Abadi D.J., DeWitt D.J., Madden S., and Stonebraker, M. A comparison of approaches to large-scale data analysis. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp.165-178, 2009. 23. Jiang F., Jiang Y., Zhi H., Dong Y., Li H., Ma S., Wang Y., Dong Q., Shen H., andWang Y.Artificial intelligence in healthcare: past, present and future. 24. Santos M.Y., Costa C., Galvão J., Andrade C., Martinho B.A., Lima F.V., andCosta E.Evaluating SQL-on-Hadoop for big data warehousing on not-so-good hardware. In 25. Mehra R., Lodhi N., andBabu R.Column Based NoSQL Database, Scope and Future. 26. Lachev T.Applied Microsoft analysis services 2005 and Microsoft Business Intelligence platform: a guide to the leading OLAP platform. Prologika Press, 2015. 27. Escriva R., Sirer E.G., andWong B.Managing dependencies between operations in a distributed system. 28. Harrison G.Next Generation Databases in NoSQL and Big Data.Apress, 2015. 29. Floratou A., Minhas U.F., andÖzcan F.Sql-on-hadoop: Full circle back to shared-nothing database architectures. 30. Pal S.SQL for Streaming, Semi-Structured, and Operational Analytics. In 31. Demirkan, H. and Delen, D.Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. 32. Fernandez M., Popa L., andSuciu D.A structure-based approach to querying semi-structured data. In 33. Baker J., Bond C., Corbett J.C., Furman J.J., Khorlin A., Larson J., Leon J.M., Li Y., Lloyd A., andYushprakh V.Megastore: Providing scalable, highly available storage for interactive services, 2011. 34. Johnston S., Cox S., andTakeda K.Scientific computation and data management using microsoft windows azure. In 35. Van Rijmenam, M. Think bigger: Developing a successful big data strategy for your business.Amacom, 2014. 36. Gharehchopogh, F.S. and Khalifelu, Z.A.Analysis and evaluation of unstructured data: text mining versus natural language processing. In 37. Adorf C.S., Dodd P.M., Ramasubramani V., andGlotzer S.C.Simple data and workflow management with the signac framework. 38. Thottuvaikkatumana R.Apache Spark 2 for Beginners. Packt Publishing Ltd, 2016. 39. Liu X., Thomsen C., andPedersen T.B.ETLMR: a highly scalable dimensional ETL framework based on mapreduce. In 40. Chen, C.P. and Zhang, C.Y.Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. |
[1] | Rohit Kumar Verma and Sukhvir Singh. A Hybrid Framework of Resource Allocation using Firefly and Deep Learning in Big Data Scheduling [J]. Int J Performability Eng, 2024, 20(6): 333-343. |
[2] | Jayanthi M and K. Ram Mohan Rao. Efficient Resource Managing and Job Scheduling in a Heterogeneous Kubernetes Cluster for Big Data [J]. Int J Performability Eng, 2024, 20(3): 157-166. |
[3] | V. Sudha and Anna Saro Vijendran. OSD-DNN: Oil Spill Detection using Deep Neural Networks [J]. Int J Performability Eng, 2024, 20(2): 57-67. |
[4] | Ammar Zakzouk, Bassim Oumran, and Hasan Hasan. ALLI: A High-Performance Approach to Data Deduplication in Hadoop using Enhanced Hashing and Two-Level Indexing Techniques [J]. Int J Performability Eng, 2024, 20(12): 741-752. |
[5] | K. Lavanya, Smrithi Prakash, Yash Gedam, Altamash Aijaz, and L. Ramanathan. Real Time Digital Face Mask Detection using MobileNet-V2 and SSD with Apache Spark [J]. Int J Performability Eng, 2022, 18(8): 598-604. |
[6] | Manu Banga. An Intelligent Software System for Real Estate Systems using Machine Learning [J]. Int J Performability Eng, 2022, 18(6): 444-452. |
[7] | Mengli Ruan. Quality Management of the Food Cold Chain System based on Big Data Analysis [J]. Int J Performability Eng, 2020, 16(5): 757-765. |
[8] | Hua Zhang, Ligang Liu, and Codjo Barthelemy Tossenou. Enterprise Strategy Logic and Strategic Selection in the Context of Big Data: A Study based on Baidu Company [J]. Int J Performability Eng, 2020, 16(3): 490-498. |
[9] | Huaiguang Wu, Yongsheng Shi, Shenyi Qian, Hongwei Tao, and Jiangtao Ma. Application of Improved Feature Pre-processing Method in Prevention and Control of Electricity Charge Risk [J]. Int J Performability Eng, 2019, 15(9): 2453-2461. |
[10] | Yoshinobu Tamura and Shigeru Yamada. Fault Big Data Analysis Tool based on Deep Learning [J]. Int J Performability Eng, 2019, 15(5): 1289-1296. |
[11] | Chunqiao Mi. Student Performance Early Warning based on Data Mining [J]. Int J Performability Eng, 2019, 15(3): 822-833. |
[12] | Zhipeng Chu and Ping Yu. Innovation of E-Commerce Terminal Express Cooperative Distribution based on Big Data Platform [J]. Int J Performability Eng, 2019, 15(3): 977-986. |
[13] | Chao Lin and Yanan Liu. Target Recognition and Behavior Prediction based on Bayesian Network [J]. Int J Performability Eng, 2019, 15(3): 1014-1022. |
[14] | Lin Zou, Qinyun Liu, Sicong Ma, and Fengbao Ma. Eliciting Data Relations of IOT based on Creative Computing [J]. Int J Performability Eng, 2019, 15(2): 559-570. |
[15] | Zhaozheng Chen, Yuanyuan Wang, Zhengyu Tan, and Yuejin Zhang. Multi-Dimensional and Multi-Scale Modeling of Traffic State in Jiangxi Expressway based on Vehicle Network [J]. Int J Performability Eng, 2019, 15(12): 3287-3294. |
|