[1] Jannach D., andJugovac M., 2019. Measuring the business value of recommender systems. ACM Transactions on Management Information Systems (TMIS), 10(4), pp. 1-23. [2] Jannach D., Ludewig M., andLerche L., 2017. Session-based item recommendation in e-commerce: on short-term intents, reminders, trends and discounts. User Modeling and User-Adapted Interaction, 27(3), pp. 351-392. [3] Jannach D., Quadrana M., andCremonesi P., 2012. Session-based recommender systems. In Recommender Systems Handbook, pp. 301-334. [4] Yuan F., Karatzoglou A., Arapakis I., Jose J.M., andHe X., 2019. A simple convolutional generative network for next item recommendation. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 582-590. [5] Liu Q., Wu S., Wang L., andTan T., 2016. Predicting the next location: A recurrent model with spatial and temporal contexts. In Proceedings of the AAAI conference on artificial intelligence, 30(1). [6] Liu Q., Zeng Y., Mokhosi R., andZhang H., 2018. STAMP: short-term attention/memory priority model for session-based recommendation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1831-1839. [7] Wang S., Cao L., Wang Y., Sheng Q.Z., Orgun M.A., andLian D., 2021. A survey on session-based recommender systems. ACM Computing Surveys (CSUR), 54(7), pp. 1-38. [8] Qiu R., Huang Z., Chen T., andYin H., 2021. Exploiting positional information for session-based recommendation. ACM Transactions on Information Systems (TOIS), 40(2), pp. 1-24. [9] Gupta B., andGarg D., 2011. Fp-tree based algorithms analysis: fpgrowth, cofi-tree and ct-pro. International Journal on Computer Science and Engineering, 3(7), pp. 2691-2699. [10] Song W., andYang K., 2014. Personalized recommendation based on weighted sequence similarity. In Practical Applications of Intelligent Systems: Proceedings of the Eighth International Conference on Intelligent Systems and Knowledge Engineering, Shenzhen, China, Nov 2013 (ISKE 2013), pp. 657-666. [11] Choi K., Yoo D., Kim G., andSuh Y., 2012. A hybrid online-product recommendation system: combining implicit rating-based collaborative filtering and sequential pattern analysis. Electronic Commerce Research and Applications, 11(4), pp. 309-317. [12] Liu D.R., Lai C.H., andLee W.J., 2009. A hybrid of sequential rules and collaborative filtering for product recommendation. Information Sciences, 179(20), pp. 3505-3519. [13] Li J., Ren P., Chen Z., Ren Z., Lian T., andMa J., 2017. Neural attentive session-based recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1419-1428. [14] Fang J.,2021. Session-based recommendation with self-attention networks. Arxiv Preprint Arxiv:2102.01922. [15] Hidasi B., andKaratzoglou A., 2018. Recurrent neural networks with top-k gains for session-based recommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 843-852. [16] Cho K., Van Merriënboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., andBengio Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Arxiv Preprint Arxiv:1406.1078. [17] Wu S., Tang Y., Zhu Y., Wang L., Xie X., andTan T., 2019. Session-based recommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), pp. 346-353. [18] Gupta P., Garg D., Malhotra P., Vig L., andShroff G., 2019. NISER: normalized item and session representations to handle popularity bias. Arxiv Preprint Arxiv:1909.04276. [19] Chen T., andWong R.C.W., 2020. Handling information loss of graph neural networks for session-based recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1172-1180. [20] Mitheran S., Java A., Sahu S.K., andShaikh A., 2021. Introducing self-attention to target attentive graph neural networks. Arxiv Preprint Arxiv:2107.01516. [21] Li A., Cheng Z., Liu F., Gao Z., Guan W., andPeng Y., 2022. Disentangled graph neural networks for session-based recommendation. IEEE Transactions on Knowledge and Data Engineering, 35(8), pp. 7870-7882. [22] Zheng X., Li X., Jiang S., Chen Z., Sun L., Yu Q., Guo L., andLuo Y., 2024. Lighter sequential recommendation algorithm with time interval awareness augmentation. IEEE Transactions on Services Computing. [23] Wang N., Wang S., Wang Y., Sheng Q.Z., andOrgun M., 2020. Modelling local and global dependencies for next-item recommendations. In International Conference on Web Information Systems Engineering, pp. 285-300. [24] Chen Z., Silvestri F., Wang J., Zhang Y., Huang Z., Ahn H., andTolomei G., 2022. Grease: generate factual and counterfactual explanations for gnn-based recommendations. Arxiv Preprint Arxiv:2208.04222. [25] Tan J., Xu S., Ge Y., Li Y., Chen X., andZhang Y., 2021. Counterfactual explainable recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 1784-1793. [26] Wu S., Sun F., Zhang W., Xie X., andCui B., 2022. Graph neural networks in recommender systems: a survey. ACM Computing Surveys, 55(5), pp. 1-37. [27] Gao C., Wang X., He X., andLi Y., 2022. Graph neural networks for recommender system. In Proceedings of the fifteenth ACM international conference on web search and data mining, pp. 1623-1625. [28] Xu C., Zhao P., Liu Y., Sheng V.S., Xu J., Zhuang F., Fang J., andZhou X., 2019. Graph contextualized self-attention network for session-based recommendation. In IJCAI, 19(2019), pp. 3940-3946. [29] Wang X., He X., Wang M., Feng F., andChua T.S., 2019. Neural graph collaborative filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165-174. [30] Boudaa B., Belhocine K.A., andGuelfout A., 2023. Enabling session-based recommender systems through graph convolutional networks. In IAM, pp. 102-108. [31] Xiao H., andMeng L., 2017. SAR: semantic analysis for recommendation. Arxiv Preprint Arxiv:1702.06247. |