Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (11): 946-954.doi: 10.23940/ijpe.21.11.p5.946954
Previous Articles Next Articles
Gayathri D and S.P. Shantharajah
Submitted on
;
Revised on
;
Accepted on
Contact:
*E-mail address: shantharajah.sp@vit.ac.in
Gayathri D and S.P. Shantharajah. A Survey on Fusion of Internet of Things and Cloud Computing [J]. Int J Performability Eng, 2021, 17(11): 946-954.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Hamad, Z.J. and Askar, S, Machine Learning Powered IoT for Smart Applications. 2. Li, H., Ota, K. and Dong, M.Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. 3. Xu Z., Liu W., Huang J., Yang C., Lu J., andTan H,Artificial intelligence for Securing IoT Services in Edge Computing: a Survey.Security and Communication Networks, 2020. 4. Chai N., Mao C., Ren M., Zhang W., Poovendran P., andBalamurugan P,Role of BIC (Big Data, IoT, and Cloud) for Smart Cities. 5. Biswas, A.R. and Giaffreda, R,IoT and Cloud Convergence: Opportunities and Challenges. In 6. Benazzouz Y., Munilla C., Günalp O., Gallissot M., andGürgen, , Sharing User IoT Devices in the Cloud. In 7. Narezal, K. and Kalmani, V.Study of Lightweight ABE for Cloud based IoT. In 8. Emeakaroha V.C., Cafferkey N., Healy P., andMorrison J.P.A Cloud-based Iot Data Gathering and Processing Platform. In 9. Farris I., Militano L., Nitti M., Atzori L., andIera A,Federated Edge-assisted Mobile Clouds for Service Provisioning in Heterogeneous IoT Environments. In 10. Park, D. and Cho, J., Cloud-connected Code Executable IoT Device with On-cloud Virtually Memory Controller for Dynamic Instruction Streaming. In 11. Serpanos, D. and Wolf, M, 12. Baccarelli E., Scarpiniti M., Momenzadeh A., andAhrabi S.S.Learning-in-the-Fog (LiFo): Deep Learning Meets Fog Computing for the Minimum-Energy Distributed Early-Exit of Inference in Delay-Critical IoT Realms. 13. Sarma B., Kumar G., Kumar R., andTuithung T.Fog Computing: An Enhanced Performance Analysis Emulation Framework for IoT with Load Balancing Smart Gateway Architecture. In 14. Kaur, H. and Sood, S.K, Energy-efficient IoT-fog-cloud Architectural Paradigm for Real-time Wildfire Prediction and Forecasting. 15. Zhang G., Shen F., Liu Z., Yang Y., Wang K., andZhou M.T,FEMTO: Fair and Energy-minimized Task offloading for Fog-enabled IoT Networks. 16. Al-Khafajiy, M., Baker, T., Waraich, A., Alfandi, O., and Hussien, A. Enabling High Performance Fog Computing through Fog-2-fog Coordination Model. In 17. Karamoozian A., Hafid A., andAboulhamid E.M,On the Fog-cloud Cooperation: How Fog Computing can Address Latency Concerns of IoT Applications. In 18. Mendki P.Docker Container based Analytics at Iot Edge Video Analytics Usecase. In 19. Jain, R.,Tata, S, Cloud to Edge: Distributed Deployment of Process-aware IoT Applications. In 20. Jalali F., Lynar T., Smith O.J., Kolluri R.R., Hardgrove C.V., Waywood N., andSuits F.Dynamic Edge Fabric Environment: Seamless and Automatic Switching among Resources at the Edge of Iot Network and Cloud. In 21. Thangiah L., Ramanathan C., andChodisetty L.S.Distribution Transformer Condition Monitoring based on Edge Intelligence for Industrial IoT. In 22. Song Y., Yau S.S., Yu R., Zhang X., andXue G.An Approach to QoS-based Task Distribution in Edge Computing Networks for IoT Applications. In 23. Singh, S, Optimize Cloud Computations using Edge Computing. In 24. Krishnamurthi R., Kumar A., Gopinathan D., Nayyar A., andQureshi B.An Overview of IoT Sensor Data Processing, Fusion, and Analysis Techniques. 25. Yoshida E., Yokotani T., Ishibashi K., andMukai H,Proposals on the Root Data Domain Gateway and System Operations for IoT Data Interoperability. In 26. Dave, M., Doshi, J., and Arolkar, H, MQTT-CoAP Interconnector: IoT Interoperability Solution for Application Layer Protocols. In 27. Delsing, J., Eliasson, J., van Deventer, J., Derhamy, H., and Varga, P, Enabling IoT Automation using Local Clouds. In 28. Kertesz, A, Interoperating Cloud Services for Enhanced Data Management. In 29. Žarko I.P., Mueller S., Płociennik M., Rajtar T., Jacoby M., Pardi M., Insolvibile G., Glykantzis V., Antonić A., Kušek M., andSoursos S,The SymbIoTe Solution for Semantic and Syntactic Interoperability of Cloud-based IoT Platforms. In 30. Truong, H.L, Towards a Resource Slice Interoperability Hub for Iot. In 31. Belsa A.,Sarabia-Jacome, D., Palau, C.E., and Esteve, M, Flow-based Programming Interoperability Solution for IoT Platform Applications. In 32. Mir, M. and Ravindran, D, LETISA: Latency Optimal Edge Computing Technique for IoT based Smart Applications. 33. Ma K., Bagula A., Nyirenda C., andAjayi O.An Iot-based Fog Computing Model. 34. Shukla S., Hassan M.F., Khan M.K., Jung L.T., andAwang A,An Analytical Model to Minimize the Latency in Healthcare Internet-of-things in Fog Computing Environment. 35. Paul A., Pinjari H., Hong W.H., Seo H.C., andRho S.Fog Computing-based IoT for Health Monitoring System.Journal of Sensors, 2018 36. Mondragón-Ruiz, G., Tenorio-Trigoso, A., Castillo-Cara, M., Caminero, B., and Carrión, C. An Experimental Study of Fog and Cloud Computing in CEP-based Real-Time IoT Applications. 37. Tran Q.M., Nguyen P.H., Tsuchiya T., andToulouse M,Designed Features for Improving Openness, Scalability and Programmability in the Fog Computing-based IoT Systems. 38. Hou X., Ren Z., Cheng W., Chen C., andZhang H.Fog based Computation offloading for Swarm of Drones. In 39. Aguzzi S., Bradshaw D., Canning M., Cansfield M., Carter P., Cattaneo G., Gusmeroli S., Micheletti G., Rotondi D., andStevens R.Definition of a Research and Innovation Policy Leveraging Cloud Computing and IoT Combination. 40. Alessio B.,De Donato, W., Persico, V., and Pescapé, A, On the Integration of Cloud Computing and Internet of Things. 41. Suciu G., Vulpe A., Halunga S., Fratu O., Todoran G., andSuciu V.Smart Cities built on Resilient Cloud Computing and Secure Internet of Things. In 42. Peng S.L., Pal S., andHuang L.Principles of Internet of Things (IoT) ecosystem: Insight Paradigm. Springer International Publishing, 2020. 43. Rao B.P., Saluia P., Sharma N., Mittal A., andSharma S.V,Cloud Computing for Internet of things & Sensing based Applications. In 44. S. M. Babu, A. J.Lakshmi and B. T. Rao, A Study on Cloud-based Internet of Things: CloudIoT, 45. S. Chen, S. Member, H. Xu, D. Liu, S. Member, B. Hu,H. Wang, A Vision of IoT: Applications, Challenges, and Opportunities with China Perspective, 46. Botta A.,De Donato, W., Persico, V., Pescapé, A.: Integration of Cloud Computing and Internet of Things: a Survey. 47. S. Tyagi, A. Agarwal,P. Maheshwari, A Conceptual Framework for IoT-based Healthcare System using Cloud Computing, in 48. Mansaf Alam, Kashish Ara Shakil, Samiya Khan, Internet of Things (IoT) Concepts and Applications, S.M.A.R.T. Environments,Springer Nature Switzerland AG, 2020. |
[1] | D. Sakthivel and B. Radha. Adaptive Model to Detect Anomaly and Real-Time Attacks in Cloud Environment Using Data Mining Algorithm [J]. Int J Performability Eng, 2021, 17(10): 889-899. |
[2] | Kun Li, Liwei Jia, and Xiaoming Shi. IPSOMC: An Improved Particle Swarm Optimization and Membrane Computing based Algorithm for Cloud Computing [J]. Int J Performability Eng, 2021, 17(1): 135-142. |
[3] | Xiaoxiang Fan. Cloud Computing Task Scheduling based on Improved Bird Swarm Algorithm [J]. Int J Performability Eng, 2021, 17(1): 85-94. |
[4] | Priti Kumari and Parmeet Kaur. Connected Data Set-based Virtual Machine Replication in Cloud Computing [J]. Int J Performability Eng, 2020, 16(9): 1351-1361. |
[5] | Shujun Pei, Qinggen Zhang, and Xuehui Cheng. Workflow Scheduling using Graph Segmentation and Reinforcement Learning [J]. Int J Performability Eng, 2020, 16(8): 1262-1270. |
[6] | Yuan Liang, Hongfang Cheng, and Wangshun Chen. Building Energy Consumption Data Index Method in Cloud Computing Environment [J]. Int J Performability Eng, 2020, 16(5): 747-756. |
[7] | Xuan Chen, Zhengjiang Song, Hongfeng Zheng, and Zhiping Wan. Task Scheduling based on Fruit Fly Optimization Algorithm in Mobile Cloud Computing [J]. Int J Performability Eng, 2020, 16(4): 618-628. |
[8] | Yong Cui, Liang Zhu, Zengyu Cai, and Ying Hu. An Adaptive Traffic-Aware Migration Algorithm Selection Framework in Live Migration of Multiple Virtual Machines [J]. Int J Performability Eng, 2020, 16(2): 314-324. |
[9] | Yuxia Li. ACO-SOS-based Task Scheduling in Cloud Computing [J]. Int J Performability Eng, 2019, 15(9): 2534-2543. |
[10] | Yan Li and Yao Yao. Scheduling Algorithm for a Task under Cloud Computing [J]. Int J Performability Eng, 2019, 15(8): 2081-2090. |
[11] | Guangqian Kong, Xun Duan, and Yun Wu. Cloud-OM Patching: A Novel Video Stream Scheduling Scheme based on Hybrid Cloud-Overlay Architecture [J]. Int J Performability Eng, 2019, 15(8): 2208-2216. |
[12] | Yuxia Li. Cloud Computing Resource Load Forecasting based on Bat Algorithm Optimized SVM [J]. Int J Performability Eng, 2019, 15(7): 1955-1964. |
[13] | Ge Jiao, Lang Li, and Yi Zou. Improved Security for Android System based on Multi-Chaotic Maps using a Novel Image Encryption Algorithm [J]. Int J Performability Eng, 2019, 15(6): 1692-1701. |
[14] | Zhili Zhang, Chunping Liu, and Xiaoming Ma. Intelligent Distance Measurement of Robot Obstacle Avoidance in Cloud Computing Environment [J]. Int J Performability Eng, 2019, 15(3): 959-968. |
[15] | Shuaiqiu Xiang and Zhenjia Zhu. Dynamic Access Control of Encrypted Data in Cloud Computing Environment [J]. Int J Performability Eng, 2019, 15(3): 969-976. |
|