Int J Performability Eng ›› 2019, Vol. 15 ›› Issue (12): 3171-3178.doi: 10.23940/ijpe.19.12.p8.31713178

Previous Articles     Next Articles

Intelligent Fault Diagnosis of 3D Printers based on Reservoir Computing

Xiang Duana,b, Jianyu Longa, Chuan Lia, Diego Cabrerac, and Shaohui Zhanga,*   

  1. aSchool of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China;
    bCollege of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China;
    cGIDTEC, Universidad Politécnica Salesiana, Ecuador
  • Submitted on ; Revised on ; Accepted on
  • Contact: * E-mail address:

Abstract: Fault diagnosis is important for the working conditions of 3D printers, because the failure of 3D printers will have a great impact on the quality of printed products and result in unqualified printing. In this paper, the reservoir computing (RC) method and the data collected by the attitude sensor are analyzed to obtain the health status of a 3D printer. Considering the economics and viability of fault diagnosis, a low-cost attitude sensor is installed on the moving platform of the 3D printer to collect tri-axial angular velocity, tri-axial acceleration, and tri-axial magnetic field strength signals. Then, the collected data is divided into training data and test data. The training data is used to establish the optimization parameter of the RC model to improve its performance, and the test data is used to identify the failure patterns using the model. Finally, compared with the SAE and SVM intelligent diagnosis techniques, the RC method achieves the best fault recognition accuracy, which further proves its superiority.

Key words: 3D printer, pattern recognition, fault diagnosis, reservoir computing