Int J Performability Eng ›› 2019, Vol. 15 ›› Issue (7): 1929-1938.doi: 10.23940/ijpe.19.07.p20.19291938

Previous Articles     Next Articles

Chicken Swarm Optimization in Task Scheduling in Cloud Computing

Liru Han*   

  1. Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
  • Submitted on ;
  • Contact: * E-mail address:
  • About author:Liru Han is lecturer at Zhejiang University of Water Resources and Electric Power. She received her master's degree from Hebei University of Technology. Her research focuses on cloud computing.
  • Supported by:
    This work is supported by the Basic Public Welfare Research Project of Zhejiang Province (No. LGF18F020014).

Abstract: In order to solve the problem of low efficiency in resource scheduling in cloud computing, an improved chicken swarm optimization (CSO) is proposed for task scheduling. Firstly, the concept of opposition-based learning is introduced to initialize the chicken population and improve the global search ability. Secondly, the concepts of the weight value and learning factor in particle swarm optimization (PSO) are introduced to improve the positions of chickens, and the individual positions of chickens are optimized. Thirdly, the overall individual positions of the CSO are optimized by the difference algorithm. Finally, the possible cross-boundary of individual positions in the algorithm is prevented as a whole by boundary processing. In the simulation experiment, the optimized CSO is compared with the basic CSO, PSO, and ant colony optimization (ACO) in terms of completion time, cost, energy consumption, and load balancing, and good results are achieved.

Key words: chicken swarm algorithm, opposition-based learning, learning factor, difference algorithm