Int J Performability Eng ›› 2018, Vol. 14 ›› Issue (12): 29052914.doi: 10.23940/ijpe.18.12.p1.29052914
Yanhua Cao(), Jinmao Guo, Yong Li, and Huiqiang Lv
Revised on
;
Accepted on
Contact:
Cao Yanhua
Email:mark_cao1983@163.com
Yanhua Cao, Jinmao Guo, Yong Li, and Huiqiang Lv. Engine Life Prediction based on Degradation Data [J]. Int J Performability Eng, 2018, 14(12): 29052914.
Add to citation manager EndNoteReference ManagerProCiteBibTeXRefWorks
Table 1
Sample data"
Number  Use time/h  ${{\hat{p}}_{\max }}$/MPa  ${{\hat{\theta }}_{fd}}$/oCA  ${{\hat{V}}_{p}}$/g^{2} 

1  11  2.8950  34.9500  54.3540 
2  38  2.8744  33.9796  48.7860 
3  59  2.8647  33.9000  46.8470 
4  103  2.8228  32.8462  42.8991 
5  140  2.8090  32.1142  42.0632 
6  187  2.7958  31.1880  38.8610 
7  190  2.7847  31.1671  36.0951 
8  250  2.7736  31.0942  31.3503 
9  300  2.7521  30.3144  32.9560 
10  320  2.7439  29.5521  32.7874 
11  350  2.7330  29.0114  30.8780 
12  390  2.7132  28.9751  31.7270 
13  450  2.6739  27.5521  28.4621 
14  497  2.6647  26.6285  26.5810 
15  507  2.6527  26.4883  27.8581 
16  550  2.6429  25.8854  25.1580 
Table 4
Standardized data and its principal component"
Number  Use time/h  Standardized data and the PCX  

${{{\hat{p}}'}_{\max }}$  $\hat{\theta }_{fd}^{'}$  ${{{\hat{V}}'}_{p}}$  X  
1  11  1.6627  1.6318  2.1069  3.1160 
2  38  1.4047  1.2874  1.4641  2.3989 
3  59  1.2832  1.2591  1.2402  2.1840 
4  103  0.7582  0.8850  0.7845  1.4017 
5  140  0.5854  0.6252  0.6880  1.0956 
6  187  0.4200  0.2964  0.3183  0.5977 
7  190  0.2809  0.2890  0.0010  0.3300 
8  250  0.1419  0.2631  0.5488  0.0790 
9  300  0.1275  0.0137  0.3634  0.2898 
10  320  0.2302  0.2843  0.3829  0.5173 
11  350  0.3668  0.4762  0.6033  0.8339 
12  390  0.6148  0.4891  0.5053  0.9294 
13  450  1.1071  0.9942  0.8822  1.7235 
14  497  1.2224  1.3220  1.0994  2.1046 
15  507  1.3727  1.3718  0.9520  2.1364 
16  550  1.4955  1.5858  1.2637  2.5100 
Table 6
The interpolation point data of principal component X"
Use time/h  X  Use time /h  X  Use time /h  X 

20  2.8770  200  0.2618  380  0.9055 
30  2.6114  210  0.1937  390  0.9294 
40  2.3784  220  0.1255  400  1.0618 
50  2.2761  230  0.0573  410  1.1941 
60  2.1662  240  0.0108  420  1.3264 
70  1.9884  250  0.0790  430  1.4588 
80  1.8106  260  0.1212  440  1.5912 
90  1.6328  270  0.1633  450  1.7235 
100  1.4550  280  0.2055  460  1.8046 
110  1.3438  290  0.2476  470  1.8857 
120  1.2611  300  0.2898  480  1.9668 
130  1.1783  310  0.4036  490  2.0478 
140  1.0956  320  0.5173  500  2.1141 
150  0.9897  330  0.6228  510  2.1625 
160  0.8837  340  0.7284  520  2.2493 
170  0.7778  350  0.8339  530  2.3362 
180  0.6719  360  0.8578  540  2.4231 
190  0.3300  370  0.8817  550  2.5100 
[1]  Y. B. Liu, J. M. Liu, X. Y. Qiao , “Application of Supportive Vector Machine in Technical States Evaluation of Diesel Engine,” Journal of Academy of Armored Force Engineering, Vol. 23, No. 2, pp. 3840, 2009 
[2]  F. Zhao and H. W. Wang , “Research on Condition based Maintenance for AeroEngine Using Hidden Markov,” Aeronautical Computing Technique, Vol. 40, No. 5, pp. 1519, 2010 
[3] 
X. Liang, X. S. Li, L. Zhang , “Survey of Fault Prognostics Supporting Condition based Maintenance,” Measurement & Control Technology, Vol. 26, No. 6, pp. 58, 2007
doi: 10.1631/jzus.2007.A1596 
[4]  Y. H. Cao , “Research on Autonomic Logistics Key Technologies for Armored Equipment,” Ph.D. Dissertation, Academy of Armored Forces Engineering, 2012 
[5]  H.W. Wang and K. N. Teng , “Review of Reliability Evaluation Technology based on Accelerated Degradation Data,” Systems Engineering and Electronics, Vol. 39, No. 12, pp. 28772885, 2017 
[6]  Z. G. Guo , “Reliability Analysis of Barrel’s Life based on Performance Degradation Data,” Master’s Thesis, Nanjing University of Science and Technology, 2011 
[7]  X.X. Kou and X. P. He , “Time Series Prediction based on RBM Neural Network,” Mathematics in Practice and Theory, Vol. 46, No. 9, pp. 173178, 2016 
[8]  W. B. Chen , “The Principle and Practice of Artificial Neural Network, ”Xidian University Press, Xi'an, pp. 4464, 2016 
[9]  Y. H. Cao, S. X. Zhang, and Y. Li , “Design of Engine Condition Detection for a Certain Type of Armored Vehicle,” in Proceedings of OSEC2017, pp. 1518, 2017 
[10]  W.B. Zhang and H.Y. Chen. , “Statistical Analysis of Practical Data and Application of SPSS12.0,” The Posts and Telecommunications Press, Beijing, 2006 
[11]  X. P. Zheng, J. J. Gao, M. T. Liu , “Accident Prediction Theory and Method, ” Tsinghua University Press, Beijing, 2009 
[12]  D. Zhang, C. S. Zu, C. C. Zhao , “Principal Component and Neural Network Combined Fuel Consumption Forecast,” Agricultural Equipment & Vehicle Engineering, Vol. 53, No. 6, pp. 4752, 2015 
[13]  J. J. Jiang , “Research on Prediction of LeadAcid Batteries’ Remaining Discharge Time”, Electrical & Energy Management Technology, No. 7, pp. 7378, 2017 
[14]  Z. L. Huang, Z. B. Wang, J. W. Wang , “Review of Reliability Evaluation Methods based on Performance Degradation Data,” Electrical & Energy Management Technology, No. 19, pp. 3540, 2017 
[15]  Y. H. Cao, Y. Li, Y. Zheng, X. Zan , “Runtime Forecast of Military Vehicle Diesel Engine based on BP Neural Network,” in Proceedings of QR2MSE 2016, pp. 509512, 2016 
[16]  H. Y. Chen, J. M. Zhu, Z. N. Ding , “A Survey of Researches on Combination Forecasting Models and Methodologies,” College Mathematics, Vol. 33, No. 4, pp. 19, 2017 
[1]  Lei Wang, Yanning Zhang, Runping Xi, and Lu Ling. Natural Image Classification based on MultiParameter Optimization in Deep Convolutional Neural Network [J]. Int J Performability Eng, 2019, 15(9): 25152521. 
[2]  Lingling Wang, Wenyin Gong, and Xiang Li. Deep Convolutional Neural Network and Its Application in Image Recognition of Road Safety Projects [J]. Int J Performability Eng, 2019, 15(8): 21822189. 
[3]  Zhongbo Wang and Zhilin Suo. Data Analysis of Hybrid Principal Component for Rural Land Circulation Management based on Gray Relation Algorithmic Models [J]. Int J Performability Eng, 2019, 15(7): 19761987. 
[4]  Junxi Bi, Chenglong Zheng, Hongzhong Huang, Xiaojuan Song, and Jinfeng Li. Fault Diagnosis of Wind Turbine Blades based on Wavelet Theory and Neural Network [J]. Int J Performability Eng, 2019, 15(7): 18951904. 
[5]  Pavan Kumar Singh, Nitin Singh, and Richa Negi. ShortTerm Wind Power Forecasting using Waveletbased Hybrid Recurrent Dynamic Neural Networks [J]. Int J Performability Eng, 2019, 15(7): 17721782. 
[6]  Chunqiao Mi. DataDriven Student Learning Performance Prediction based on RBF Neural Network [J]. Int J Performability Eng, 2019, 15(6): 15601569. 
[7]  Xin Zhang, Jianmin Zhao, Xianglong Ni, Haiping Li, and Fucheng Sun. Degradation Index Extraction and Degradation Trend Prediction for Rolling Bearing [J]. Int J Performability Eng, 2019, 15(5): 13341342. 
[8]  Sha Li and Yu Quan. Financial Risk Prediction for Listed Companies using IPSOBP Neural Network [J]. Int J Performability Eng, 2019, 15(4): 12091219. 
[9]  Lu Wang, Chenglin Wen, and Lan Wu. Target Identity Recognition Method based on Trusted Information Fusion [J]. Int J Performability Eng, 2019, 15(4): 12351246. 
[10]  Yang Ge, Lanzhong Guo, and Yan Dou. Remaining Useful Life Prediction of Machinery based on KS Distance and LSTM Neural Network [J]. Int J Performability Eng, 2019, 15(3): 895901. 
[11]  Hui Li, Yuanyuan Zheng, and Pengju Ren. DualChannel Attention Model for Text Sentiment Analysis [J]. Int J Performability Eng, 2019, 15(3): 834841. 
[12]  Chunqiao Mi. Student Performance Early Warning based on Data Mining [J]. Int J Performability Eng, 2019, 15(3): 822833. 
[13]  Qinyun Liu, Lin Zou, Sicong Ma, and Hongji Yang. Intelligence to Artificial Creativity [J]. Int J Performability Eng, 2019, 15(2): 654666. 
[14]  Wei Ren, Qinyun Liu, and Meiyu Shi. Establishing World Cultural Heritage Sites Resource Allocation System and Management System based on Neural Network Algorithm—A Case on HailongtunTusi Site [J]. Int J Performability Eng, 2019, 15(2): 547558. 
[15]  Jinhai Wang, Jianwei Yang, Qiang Li, and Hekai Zhu. Remaining Useful Life Prediction for Degradation Process of Gear System with Contact Damage Model [J]. Int J Performability Eng, 2019, 15(1): 241251. 
