Int J Performability Eng ›› 2019, Vol. 15 ›› Issue (1): 220-229.doi: 10.23940/IJPE.19.01.P22.220229
Previous Articles Next Articles
Shaohua Yang, Guoliang Lu(), Aiqun Wang, and Peng Yan
Revised on
;
Accepted on
Contact:
Lu Guoliang
E-mail:luguoliang@sdu.edu.cn
Shaohua Yang, Guoliang Lu, Aiqun Wang, and Peng Yan. High-Level Feature Extraction based on Correlogram for State Monitoring of Rotating Machinery with Vibration Signals [J]. Int J Performability Eng, 2019, 15(1): 220-229.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Computation of selected ten typical features"
Features | Formulations |
---|---|
RMS | ${{X}_{RMS}}=\sqrt{\frac{\sum\limits_{z=1}^{Z}{{{x}_{z}}^{2}}}{Z}}$ |
Crest factor | ${{X}_{C}}=\frac{\left| {{x}_{z}} \right|}{{{X}_{RMS}}}$ |
Kurtosis | ${{X}_{K}}=\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{(\frac{{{x}_{z}}-\overline{x}}{{{X}_{SD}}})}^{4}}}$ |
Waveform | ${{X}_{W}}=\frac{{{X}_{RMS}}}{\frac{1}{Z}\sum\limits_{z=1}^{Z}{\left| {{x}_{z}} \right|}}$ |
Skewness | ${{X}_{SK}}=\frac{Z\sum\limits_{z=1}^{Z}{{{({{x}_{z}}-\overline{x})}^{3}}}}{(Z-1)(Z-2){{X}_{SD}}^{3}}$ |
Mean | $\overline{x}=\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{x}_{z}}}$ |
SD | ${{X}_{SD}}=\sqrt{\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{({{x}_{z}}-\overline{x})}^{2}}}}$ |
MSE | $MSE=\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{\varepsilon }_{z}}^{2}},{{\varepsilon }_{z}}=observe{{d}_{z}}-predicte{{d}_{z}}$ |
Variance | ${{X}_{V}}=\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{({{x}_{z}}-\overline{x})}^{2}}}$ |
MP | ${{X}_{MP}}=\max ({{x}_{z}})$ |
[1] |
D. Goyal and S. B. Pabla , “The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review,” Archives of Computational Methods in Engineering, Vol. 23, No. 4, pp. 585-594, 2016
doi: 10.1007/s11831-015-9145-0 |
[2] |
G. Lu, Y. Zhou, C. Lu, X. Li , “A Novel Framework of Change-Point Detection for Machine Monitoring,” Mechanical Systems & Signal Processing, Vol. 83, pp. 533-548, 2017
doi: 10.1016/j.ymssp.2016.06.030 |
[3] |
F. Pozo, I. Arruga, L. E. Mujica, M. Ruiz, E. Podivilova , “Detection of Structural Changes through Principal Component Analysis and Multivariate Statistical Inference,” Structural Health Monitoring, Vol. 15, No. 2, pp. 127-142, 2016
doi: 10.1177/1475921715624504 |
[4] |
Y. Ding, W. He, B. Chen, Y. Zi, I. W. Selesnick , “Detection of Faults in Rotating Machinery using Periodic Time-Frequency Sparsity,” Journal of Sound and Vibration, Vol. 382, pp. 357-378, 2016
doi: 10.1016/j.jsv.2016.07.004 |
[5] |
M. Cerrada, R. V. Sánchez, D. Cabrera, G. Zurita, C. Li , “Multi-Stage Feature Selection by using Genetic Algorithms for Fault Diagnosis in Gearboxes based on Vibration Signal,” Sensors, Vol. 15, No. 9, pp. 23903-23926, 2015
doi: 10.3390/s150923903 pmid: 4610427 |
[6] |
J. Dybała and R. Zimroz,“Rolling Bearing Diagnosing Method based on Empirical Mode Decomposition of Machine Vibration Signal,” Applied Acoustics,Vol. 77, No. 3, pp. 195-203, 2014
doi: 10.1016/j.apacoust.2013.09.001 |
[7] |
G. Lu, J. Liu, P. Yan , “Graph-based Structural Change Detection for Rotating Machinery Monitoring,” Mechanical Systems and Signal Processing, Vol. 99, pp. 73-82, 2018
doi: 10.1016/j.ymssp.2017.06.003 |
[8] |
A. Ghods and H. H. Lee, “Probabilistic Frequency-Domain Discrete Wavelet Transform for Better Detection of Bearing Faults in Induction Motors,” Neurocomputing, Vol. 188, pp. 206-216, 2016
doi: 10.1016/j.neucom.2015.06.100 |
[9] |
Y. Yang, X. J. Dong, Z. K. Peng, W. M. Zhang, G. Meng , “Vibration Signal Analysis using Parameterized Time-Frequency Method for Features Extraction of Varying-Speed Rotary Machinery,” Journal of Sound and Vibration, Vol. 335, pp. 350-366, 2015
doi: 10.1016/j.jsv.2014.09.025 |
[10] |
W. Li, S. Zhang, S. Rakheja , “Feature Denoising and Nearest-Farthest Distance Preserving Projection for Machine Fault Diagnosis,” IEEE Transactions on Industrial Informatics, Vol. 12, No. 1, pp. 393-404, 2016
doi: 10.1109/TII.2015.2475219 |
[11] |
C. Wang, M. D. Prieto, L. Romeral, Z. Chen, F. Blaabjerg, X. Liu , “Detection of Partial Demagnetization Fault in PMSMs Operating under Nonstationary Conditions,” IEEE Transactions on Magnetics, Vol. 52, No. 7, pp. 1-4, 2016
doi: 10.1109/TMAG.2015.2511003 |
[12] |
X. Zhang, Y. Liang, J. Zhou , “A Novel Bearing Fault Diagnosis Model Integrated Permutation Entropy, Ensemble Empirical Mode Decomposition and Optimized SVM,” Measurement, Vol. 69, pp. 164-179, 2015
doi: 10.1016/j.measurement.2015.03.017 |
[13] |
G. He, K. Ding, H. Lin , “Fault Feature Extraction of Rolling Element Bearings using Sparse Representation,” Journal of Sound and Vibration, Vol. 366, pp. 514-527, 2016
doi: 10.1016/j.jsv.2015.12.020 |
[14] |
W. He, Y. Zi, B. Chen, F. Wu, Z. He , “Automatic Fault Feature Extraction of Mechanical Anomaly on Induction Motor Bearing using Ensemble Super-Wavelet Transform,” Mechanical Systems and Signal Processing, Vol. 54, pp. 457-480, 2015
doi: 10.1016/j.ymssp.2014.09.007 |
[15] |
N. Lu, Z. Xiao, O. P. Malik , “Feature Extraction using Adaptive Multiwavelets and Synthetic Detection Index for Rotor Fault Diagnosis of Rotating Machinery,” Mechanical Systems and Signal Processing, Vol. 52, pp. 393-415, 2015
doi: 10.1016/j.ymssp.2014.07.024 |
[16] |
W. Li, Z. Zhu, F. Jiang, G. Zhou, G. Chen , “Fault Diagnosis of Rotating Machinery with a Novel Statistical Feature Extraction and Evaluation Method,” Mechanical Systems and Signal Processing, Vol. 50, pp. 414-426, 2015
doi: 10.1016/j.ymssp.2014.05.034 |
[17] |
A. S. Rathore, M. Pathak, R. Jain, G. P. Jadaun . “Monitoring Quality of Biotherapeutic Products using Multivariate Data Analysis,” Aaps Journal, Vol. 18, No. 4, pp. 1-8, 2016
doi: 10.1208/s12248-016-9908-z pmid: 27044370 |
[18] |
A. Nigam and R. C. Tripathi, “Trademark Image Retrieval using Weighted Combination of Sift and HSV Correlogram,” International Journal of Computer Applications in Technology, Vol. 54, No. 1, pp. 61-67, 2016
doi: 10.1504/IJCAT.2016.077797 |
[19] | K. Yildiz , “Dimensionality Reduction-based Feature Extraction and Classification on Fleece Fabric Images,” Signal, Image and Video Processing, Vol. 11, No. 2, pp. 317-323, 2017 |
[20] |
H. H. Bafroui and A. Ohadi, “Application of Wavelet Energy and Shannon Entropy for Feature Extraction in Gearbox Fault Detection under Varying Speed Conditions,” Neurocomputing, Vol. 133, pp. 437-445, 2014
doi: 10.1016/j.neucom.2013.12.018 |
[21] | E. Mooi and M. Sarstedt, “Cluster Analysis,” A Concise Guide to Market Research, pp. 273-324, Springer, Berlin, Heidelberg, 2014 |
[22] |
V. Shahsavari, L. Chouinard, J. Bastien , “Wavelet-based Analysis of Mode Shapes for Statistical Detection and Localization of Damage in Beams using Likelihood Ratio Test,” Engineering Structures, Vol. 132, pp. 494-507, 2017
doi: 10.1016/j.engstruct.2016.11.056 |
[23] | R. Lourenzutti and R. A. Krohling, “The Hellinger Distance in Multicriteria Decision Making: An Illustration to the TOPSIS and TODIM Methods,” Expert Systems with Applications, Vol. 41, No. 9, pp. 4414-4421, 2014 |
[24] |
C. D. Fuh and Y. Mei, “Quickest Change Detection and Kullback-Leibler Divergence for Two-State Hidden Markov Models,” IEEE Transactions on Signal Processing, Vol. 63, No. 18, pp. 4866-4878, 2015
doi: 10.1109/ISIT.2015.7282433 |
[1] | Shuang Liu, Xing Cui, Jiayi Li, Hui Yang, and Niko Lukač. Pedestrian Detection based on Faster R-CNN [J]. Int J Performability Eng, 2019, 15(7): 1792-1801. |
[2] | Xin Zhang, Jianmin Zhao, Xianglong Ni, Haiping Li, and Fucheng Sun. Degradation Index Extraction and Degradation Trend Prediction for Rolling Bearing [J]. Int J Performability Eng, 2019, 15(5): 1334-1342. |
[3] | Yanan Liu and Xinghao Guo. Modulation Recognition based on Wavelet Transform and Fractal Theory [J]. Int J Performability Eng, 2019, 15(3): 998-1004. |
[4] | Xinliang Wang, Zhigang Guo, Jianlin Chen, Na Liu, and Wei Fang. Detection Algorithm of Friction and Wear State of Large Mechanical and Electrical Equipment in Coal Mine based on C-SVC [J]. Int J Performability Eng, 2019, 15(3): 813-821. |
[5] | Wei Jiang, Huiqiang Wang, and Keke Wu. Method for Detecting Javascript Code Obfuscation based on Convolutional Neural Network [J]. Int J Performability Eng, 2018, 14(12): 3167-3173. |
|