[1] |
Guo, Z. , Gao, L. , and Guan, L. , 2021. A manifold semantic canonical correlation framework for effective feature fusion. In 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 15- 20.
|
[2] |
Jia, Y. , Bai, L. , Liu, S. , Wang, P. , Guo, J. , and Xie, Y. , 2019. Semantically-enhanced kernel canonical correlation analysis: a multi-label cross-modal retrieval. Multimedia Tools and Applications, 78, pp. 13169- 13188.
|
[3] |
Foster, D.P. , Kakade, S.M. , and Zhang, T. , 2008. Multi-view dimensionality reduction via canonical correlation analysis. Toyota Technical Institute-Chicago.
|
[4] |
Mann, W.C. , and Thompson, S.A. , 1988. Rhetorical structure theory: toward a functional theory of text organization. Text-Interdisciplinary Journal for the Study of Discourse, 8( 3), pp. 243- 281.
|
[5] |
Lascarides, A. , and Asher, N. , 2007. Segmented discourse representation theory: dynamic semantics with discourse structure. In Computing Meaning , pp. 87- 124.
|
[6] |
Prasad, R. , Miltsakaki, E. , Dinesh, N. , Lee, A. , Joshi, A. , Robaldo, L. , and Webber, B. , 2007. The penn discourse treebank 2.0 annotation manual. December, 17, 2007.
|
[7] |
Li, J. , Sun, A. , and Joty, S.R. , 2018. SegBot: A generic neural text segmentation model with pointer network. In International Joint Conferences on Artificial Intelligence , pp. 4166- 4172.
|
[8] |
Wang, Y. , Li, S. , and Yang, J. , 2018. Toward fast and accurate neural discourse segmentation. Arxiv Preprint Arxiv:1808.09147.
|
[9] |
Lukasik, M. , Dadachev, B. , Simoes, G. , and Papineni, K. , 2020. Text segmentation by cross segment attention. Arxiv Preprint Arxiv:2004.14535.
|
[10] |
Bakshi, S. , and Sharma, D.M. , 2021. A transformer based approach towards identification of discourse unit segments and connectives. In Proceedings of the 2nd Shared Task on Discourse Relation Parsing and Treebanking (DISRPT 2021), pp. 13- 21.
|
[11] |
Asher, N. , Hunter, J. , Morey, M. , Benamara, F. , and Afantenos, S. , 2016. Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus. In 10th International Conference on Language Resources and Evaluation (LREC 2016), pp. 2721- 2727.
|
[12] |
Li, J. , Liu, M. , Kan, M.Y. , Zheng, Z. , Wang, Z. , Lei, W. , Liu, T. , and Qin, B. , 2020. Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure. Arxiv Preprint Arxiv:2004.05080.
|
[13] |
Afantenos, S. , Kow, E. , Asher, N. , and Perret, J. , 2015. Discourse parsing for multi-party chat dialogues. In Conference on Empirical Methods on Natural Language Processing (EMNLP 2015).
|
[14] |
Perret, J. , Afantenos, S. , Asher, N. , and Morey, M. , 2016. Integer linear programming for discourse parsing. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies , pp. 99- 109.
|
[15] |
Shi, Z. , and Huang, M. , 2019. A deep sequential model for discourse parsing on multi-party dialogues. In Proceedings of the AAAI Conference on Artificial Intelligence , 33( 01), pp. 7007- 7014.
|
[16] |
Majumder, B.P. , Li, S. , Ni, J. , and McAuley, J. , 2020. Interview: large-scale modeling of media dialog with discourse patterns and knowledge grounding. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8129- 8141.
|
[17] |
Gu, X. , Yoo, K.M. , and Ha, J.W. , 2021. Dialogbert: discourse-aware response generation via learning to recover and rank utterances. In Proceedings of the AAAI Conference on Artificial Intelligence, 35( 14), pp. 12911- 12919.
|
[18] |
Santra, B. , Roychowdhury, S. , Mandal, A. , Gurram, V. , Naik, A. , Gupta, M. , and Goyal, P. , 2021. Representation learning for conversational data using discourse mutual information maximization. Arxiv Preprint Arxiv:2112.05787.
|
[19] |
Hotelling, H. , 1992. Relations between two sets of variates. In Breakthroughs in Statistics: Methodology and Distribution, pp. 162- 190.
|
[20] |
Bach, F.R. , and Jordan, M.I. , 2005. A probabilistic interpretation of canonical correlation analysis.
|
[21] |
Dhillon, P.S. , Foster, D.P. , and Ungar, L.H. , 2015. Eigenwords: spectral word embeddings. Journal of Machine Learning Research, 16, pp. 3035- 3078.
|
[22] |
Pennington, J. , Socher, R. , and Manning, C.D. , 2014. Glove: global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532- 1543.
|
[23] |
Cer, D. , Diab, M. , Agirre, E. , Lopez-Gazpio, I. , and Specia, L. , 2017. Semeval-2017 task 1: semantic textual similarity-multilingual and cross-lingual focused evaluation. Arxiv Preprint Arxiv:1708.00055.
|
[24] |
Mohler, M. , and Mihalcea, R. , 2009. Text-to-text semantic similarity for automatic short answer grading. In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009) , pp. 567- 575.
|
[25] |
Wang, A. , 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461.
|
[26] |
McCann, B. , Bradbury, J. , Xiong, C. , and Socher, R. , 2017. Learned in translation: contextualized word vectors. Advances in Neural Information Processing Systems, 30.
|
[27] |
Dasgupta, S. , Cohn, T. , and Baldwin, T. , 2023. Cost-effective distillation of large language models. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 7346- 7354.
|
[28] |
Zhu, X. , Wu, H. , and Zhang, L. , 2022. Automatic short-answer grading via BERT-based deep neural networks. IEEE Transactions on Learning Technologies, 15( 3), pp. 364- 375.
|
[29] |
Gaddipati, S.K. , Nair, D. , and Plöger, P.G. , 2020. Comparative evaluation of pretrained transfer learning models on automatic short answer grading. Arxiv Preprint Arxiv:2009.01303.
|