[1] Garfinkel S.L.,2010. Digital forensics research: The next 10 years.digital investigation, 7, pp.S64-S73. [2] O'Kane P., Sezer S. and McLaughlin K., 2011. Obfuscation: The hidden malware. IEEE Security & Privacy,9(5), pp.41-47. [3] Hu Z., Zhu L., Heidemann J., Mankin A., Wessels D. and Hoffman P., 2016. Specification for DNS over transport layer security (TLS) (No. rfc7858). [4] Hoffman, P. and McManus, P., 2018. DNS queries over HTTPS (DoH) (No. rfc8484). [5] Sudhakar and Kumar, S., 2020. An emerging threat Fileless malware: a survey and research challenges.Cybersecurity, 3(1), p.1. [6] Kolhe, M. and Ahirao, P., 2017. Live vs dead computer forensic image acquisition. International Journal of Computer Science and Information Technologies,8(3), pp.455-457. [7] Shinagawa T., Eiraku H., Tanimoto K., Omote K., Hasegawa S., Horie T., Hirano M., Kourai K., Oyama Y., Kawai E. and Kono K., 2009, March. Bitvisor: a thin hypervisor for enforcing i/o device security. InProceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution environments(pp. 121-130). [8] Hirano M., Tsuzuki T., Ikeda S., Taka N., Fujiwara K. and Kobayashi R., 2017. Waybackvisor: Hypervisor-based scalable live forensic architecture for timeline analysis. In Security, Privacy, and Anonymity in Computation, Communication, and Storage: SpaCCS 2017 International Workshops, Guangzhou, China, December 12-15, 2017, Proceedings 10 (pp. 219-230). Springer International Publishing. [9] Hirano, M. and Kobayashi, R., 2022, July. Machine Learning-based Ransomware Detection Using Low-level Memory Access Patterns Obtained From Live-forensic Hypervisor. In 2022 IEEE International Conference on Cyber Security and Resilience (CSR)(pp. 323-330). IEEE. [10] Hirano M., Hodota R. and Kobayashi R., 2022. RanSAP: An open dataset of ransomware storage access patterns for training machine learning models. Forensic Science International: Digital Investigation, 40, p.301314. [11] Haris R.M., Khan K.M. and Nhlabatsi A., 2022. Live migration of virtual machine memory content in networked systems. Computer Networks, 209, p.108898. |